-
- [대학원 플립러닝 수업 우수사례] 자연어처리개론 정윤경 교수님 NEW
- 2024학년도 대학원 플립러닝 수업 우수사례 AIM4003 자연어처리개론_ 정윤경 교수님
-
- 작성일 2025-02-05
- 조회수 0
-
- 이지형 교수 연구실(IIS Lab), NAACL 2025 논문 4편 게재 승인
- 정보 및 지능 시스템 연구실(IIS Lab, 지도교수: 이지형)의 논문 4편이 자연어처리 분야의 최우수 국제학술대회인 NAACL 2025 (“2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics”)에 게재 승인되었습니다. 논문은 4월 미국 뉴 멕시코에서 발표될 예정입니다. 1. DeCAP: Context-Aware Prompt Generation for Debiased Zero-shot Question Answering in Large Language Models, NAACL 2025 저자: 배수영 (인공지능학과 박사과정), 최윤석 (성균관대 컴퓨터교육학과 조교수/소프트웨어학과 박사졸업) 대규모 언어 모델(LLMs)은 제로샷 질문 응답(QA) 과제에서 뛰어난 성능을 보이지만, 기존 방법들은 모호한 질문과 명확한 질문 유형 간의 성능 격차가 크며, 주어진 지침이나 내부 지식에 강하게 의존하여 편향 제거 성능(debiasing performance)이 낮다는 한계를 가지고 있습니다. 이를 해결하기 위해, 우리는 DeCAP (Context-Aware Prompt Generation)을 제안합니다. DeCAP은 질문 유형의 차이로 인한 성능 격차를 줄이기 위해 질문 모호성 탐지기(Question Ambiguity Detector)를 활용하고, 중립적인 문맥을 제공하기 위해 중립적 다음 문장 생성기(Neutral Next Sentence Generator)를 사용하여 내부 편향 지식에 대한 의존도를 감소시킵니다. BBQ와 UNQOVER 데이터셋을 사용해 여섯 개의 LLM에 대한 실험 결과, DeCAP이 state-of-the-arts 편향 제거 QA 성능을 달성했으며, 다양한 QA 환경에서 LLM의 공정성과 정확성을 크게 향상시키는 데 효과적임을 입증했습니다. 2. SALAD: Improving Robustness and Generalization through Contrastive Learning with Structure-Aware and LLM-Driven Augmented Data, NAACL 2025 저자: 배수영 (인공지능학과 박사과정), 김효준 (SKT/인공지능학과 석사졸업), 최윤석 (성균관대 컴퓨터교육학과 조교수/소프트웨어학과 박사졸업) 이 논문에서는 SALAD (Structure-Aware and LLM-driven Augmented Data)라는 새로운 접근법을 제안합니다. SALAD는 대조 학습(Contrastive Learning)을 위해 구조를 인지하고 반사실적(counterfactual)으로 증강된 데이터를 생성함으로써 모델의 강건성(robustness)과 일반화(generalization)**를 향상시키는 것을 목표로 합니다. 태깅 기반 방식을 사용하여 구조를 인지한 긍정 샘플을 생성하고, 대규모 언어 모델(LLM)을 활용해 다양한 문장 패턴을 가진 반사실적 부정 샘플을 생성합니다. 이를 통해 모델이 주요 문장 구성 요소 간의 구조적 관계를 학습하도록 하며, 부적절한 상관관계(spurious correlations)에 대한 의존을 최소화합니다. 감정 분류(Sentiment Classification), 성차별 탐지(Sexism Detection), 자연어 추론(Natural Language Inference) 세 가지 과제에서 실험을 통해 SALAD의 효과를 검증했으며, 그 결과 SALAD가 다양한 환경에서 모델의 강건성과 성능을 향상시킬 뿐 아니라, 분포 외(out-of-distribution) 데이터셋과 교차 도메인 시나리오에서도 일반화 성능을 강화함을 보였습니다. 3. CoRAC: Integrating Selective API Document Retrieval with Question Semantic Intent for Code Question Answering, NAACL 2025 저자: 최윤석 (성균관대 컴퓨터교육학과 조교수/소프트웨어학과 박사졸업), 나철원 (인공지능학과 석박통합과정) 자동 코드 질문 응답(AQA)은 코드 스니펫을 분석하여 코드 관련 질문에 대해 정확한 답변을 생성하는 것을 목표로 합니다. 적절한 답변을 제공하려면 코드의 관련 부분을 정확히 이해하고, 질문의 의도를 올바르게 해석해야 합니다. 그러나 실제 환경에서는 질문자가 코드의 일부만 제공하는 경우가 많아 답변을 찾는 데 어려움이 발생합니다. 응답자는 이러한 제한된 정보를 기반으로 적절한 답변을 제공할 수 있어야 합니다. 이를 해결하기 위해 우리는 CoRAC이라는 지식 기반 프레임워크를 제안합니다. CoRAC은 선택적 API 문서 검색과 질문 의미 의도 클러스터링을 통해 이해력을 향상시켜 자동 코드 질문 응답을 지원합니다. 세 가지 실제 벤치마크 데이터셋에서 CoRAC의 성능을 평가했으며, 다양한 실험을 통해 그 효과를 입증했습니다. 또한, CoRAC이 ChatGPT와 같은 대규모 언어 모델에 비해 고품질의 답변을 생성할 수 있음을 보여주었습니다. 4. Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation, NAACL Findings 2025 저자: 나철원 (인공지능학과 석박통합과정), 최윤석 (성균관대 컴퓨터교육학과 조교수/소프트웨어학과 박사졸업) 언어 모델의 취약성을 검증하기 위해 많은 적대적 공격(adversarial attack) 방법들이 제안되었으나, 대부분 다수의 쿼리와 타겟 모델에 대한 정보를 필요로 합니다. 심지어 블랙박스 공격(black-box attack)조차도 타겟 모델의 출력 정보를 요구하며, 이는 타겟 모델이 닫혀있고 접근이 불가능한 하드 블랙박스(hard black-box) 환경에서는 현실적으로 적용이 어렵습니다. 최근 제안된 하드 블랙박스 공격 방법들도 여전히 많은 쿼리를 요구하며, 적대적 생성기를 훈련하는 데 매우 높은 비용이 소요됩니다. 이러한 문제를 해결하기 위해, 우리는 타겟 모델에 접근하지 않고 적대적 예제를 생성하는 효율적인 방법인 Q-faker(Query-free Hard Black-box Attacker)를 제안합니다. Q-faker는 타겟 모델에 접근하지 않기 위해 대리 모델(surrogate model)을 사용하며, 이 대리 모델은 타겟 모델을 속일 수 있는 적대적 문장을 생성합니다. 이 과정에서 제어된 생성 기법(controlled generation techniques)을 활용합니다. 우리는 8개의 데이터셋에서 Q-faker를 평가했으며, 실험 결과, Qf-aker가 높은 전이성(transferability)과 높은 품질의 적대적 예제를 생성할 수 있음을 보여주었고, 하드 블랙박스 환경에서의 실용성을 입증했습니다. 이지형 교수: john@skku.edu | 정보 및 지능 시스템 연구실: https://iislab.skku.edu/
-
- 작성일 2025-01-23
- 조회수 606
-
- 박호건 교수 연구실 (LearnData Lab)의 그래프 신경망 연구 WSDM 2025 논문 게재 승인 (석사졸업: 박종원, 박사과정: 정희수)
- 박호건 교수 연구실 (LearnData Lab)의 그래프 신경망 연구 WSDM 2025 논문 게재 승인 (석사졸업: 박종원, 박사과정: 정희수) LearnData연구실 (지도교수: 박호건)의 논문이 인공지능 분야 최우수학회인 The 18th ACM International Conference on Web Search and Data Mining에 게재 승인(Accept) 되었습니다. 1. 논문 “CIMAGE: Exploiting the Conditional Independence in Masked Graph Auto- encoders” 은 인공지능학과 박종원 (석사졸업생)이 제1저자로 게재하였으며, 소프트웨어학과 정희수 (박사과정)이 공동 1저자로 참여했습니다. 성균관대학교의 박호건 교수 연구진은 자기 지도 학습(Self-Supervised Learning)을 기반으로 하는 그래프 신경망(GNN) 학습 기술 연구에서 높은 수준의 성과를 달성했습니다. 이번 연구는 CIMAGE (Conditional Independence Aware Masked Graph Auto-Encoder) 라는 모델을 개발하여, 기존의 무작위 마스킹 방식이 가진 한계를 극복하고 그래프 신경망의 표현력을 한층 더 강화하였습니다. CIMAGE 모델은 조건부 독립성(Conditional Independence)을 활용해 마스킹 전략을 설계하며, 이를 통해 그래프 표현 학습의 효율성과 정확도를 크게 높였습니다. 특히, 이번 연구에서는 높은 신뢰도의 가짜 레이블을 사용하여 두 가지 독립된 맥락을 생성하고, 이를 통해 마스킹과 재구성 작업을 수행하는 새로운 사전 학습(pretext task) 방법을 제안하였습니다. CIMAGE의 성능은 다양한 그래프 벤치마크 데이터셋에서 우수함을 입증했으며, 노드 분류 및 링크 예측과 같은 다운스트림 작업에서 높은 정확도를 기록하며, 그래프 표현 학습 분야의 새로운 기준을 제시하고 있습니다. 이 연구는 성균관대학교의 혁신적이고 선도적인 연구 방향을 보여주는 중요한 성과로, 그래프 신경망 연구 및 자율 학습 분야에서 널리 활용될 가능성이 높습니다. LearnData 연구실은 그래프, 자연어, 센서, 이미지 등 다양한 모달리티를 활용한 기계학습 및 데이터마이닝 기술 개발, 설명 가능 AI 기술 연구 등을 수행하고 있습니다. 이번 WDSM 2025 논문의 연구는 인공지능대학원, 정보통신기획평가원, 한국콘텐츠진흥원 등의 지원으로 진행되었습니다. 박호건 | hogunpark@skku.edu | LearnData Lab | https://learndatalab.github.io/
-
- 작성일 2024-12-02
- 조회수 847
-
-
- 고영중 교수 연구실(NLP lab.), EMNLP2024 논문 2편 게재 승인
- 자연어처리연구실(NLP lab, 지도교수: 고영중)의 논문 2편이 인공지능 및 자연어처리 분야의 Top-tier 국제학술대회인 EMNLP 2024(The 2024 Conference on Empirical Methods in Natural Language Processing)의 Industry Track에 게재 승인되었습니다. 각 연구는 NAVER, NC Soft와 산학 협력을 통해 이루어졌습니다. 논문#1: Hyper-QKSG: Framework for Automating Query Generation and Knowledge-Snippet Extraction from Tables and Lists (인공지능학과 박사과정 김두영, 인공지능학과 석사과정 장윤진, NAVER 산학) 논문 요약: 본 연구에서는 지식스니펫의 커버리지를 자동으로 확장하는 프레임워크를 제안합니다. 지식스니펫이란 검색엔진에서 검색 결과 상단에 위치하는 짧은 단락으로, 사용자가 쿼리에 대한 정보를 검색된 문서를 읽을 필요 없이 얻을 수 있도록 편의성을 제공하는 역할을 합니다. 테이블이나 리스트와 같이 복잡한 웹 문서구조에서 지식스니펫을 추출하기 위해서, 기존의 자연어 텍스트 기반의 언어모델을 HTML 기반의 언어모델으로 재학습하였으며, 문서로부터 쿼리와 지식스니펫을 추출하는 파이프라인 시스템을 구축하였습니다. 또한 본 연구에서 자동으로 지식스니펫의 커버리지를 확장하는 과정에서 생성되는 다양한 노이즈 지식스니펫-쿼리 쌍에 대해서 필터링 및 개선 방법을 제안하였습니다. 실제 검색 환경에서 자동 확장된 지식스니펫 데이터베이스를 기반으로 정성평가를 진행한 결과 반환된 지식스니펫이 사용자 쿼리에 대해 유용한 정보를 제공할 수 있음을 보였으며, 기존에 테이블이나 리스트에서 지식스니펫을 뽑지 못하는 한계를 극복하고 다양한 HTML 구조에서 지식스니펫을 추출하여 정보를 제공할 수 있음을 보였습니다. Abstract: These days, there is an increasing necessity to provide a user with a short knowledge-snippet for a query in commercial information retrieval services such as the featured snippet of Google. In this paper, we focus on how to automatically extract the candidates of query-knowledge snippet pairs from structured HTML documents by using a new Language Model (HTML-PLM). In particular, the proposed system is powerful on extracting them from Tables and Lists, and provides a new framework for automate query generation and knowledge-snippet extraction based on a QA-pair filtering procedure including the snippet refinement and verification processes, which enhance the quality of generated query-knowledge snippet pairs. As a result, 53.8% of the generated knowledge-snippets includes complex HTML structures such as tables and lists in our experiments of a real-world environments, and 66.5% of the knowledge-snippets are evaluated as valid. 논문#2: RAC: Retrieval-augmented Conversation Dataset for Open-domain Question Answering in Conversational Settings (인공지능학과 박사과정 최봉근, 인공지능학과 석박통합과정 박정재, NC Soft 산학) 논문 요약: “RAC: Retrieval-augmented Conversation Dataset for Open-domain Question Answering in Conversational Settings” 논문은 NC Soft와 산학 협력을 통해 구축한 데이터셋을 소개합니다. 해당 데이터셋은 검색 기반의 대화형 질의응답 문제를 다루고 있으며, 구체적으로 대화 문맥 내에서 사용자의 질문에 대한 사실 기반의 응답을 하기 위해 문맥 기반의 질의 재작성, 문서 검색, 문서 재순위화, 응답 생성의 과정을 포함하고 있습니다. 특히, 기존의 대화형 질의응답 데이터들이 검색된 문서 내의 일부 단어 혹은 문장을 추출하여 응답으로 사용하는 반면, 검색된 문서를 반영하여 사람과 같은 자연스러운 응답을 생성할 수 있는 것을 목표로 하고 있습니다. 본 논문에서는 데이터셋과 함께 BM25와 한국어 Dense Retriever을 기반으로 한 문서 검색 성능 및 Ko-BART와 LLM(GPT-4o-mini)을 기반으로 한 응답 생성 성능을 Baseline으로 제공하고 있습니다. Abstract: In recent years, significant advancements in conversational question and answering (CQA) have been driven by the exponential growth of large language models and the integration of retrieval mechanisms that leverage external knowledge to generate accurate and contextually relevant responses. Consequently, the fields of conversational search and retrieval-augmented generation (RAG) have obtained substantial attention for their capacity to address two key challenges: query rewriting within conversational histories for better retrieval performance and generating responses by employing retrieved knowledge. However, both fields are often independently studied, and comprehensive study on entire systems remains underexplored. In this work, we present a novel retrieval-augmented conversation (RAC) dataset and develop a baseline system comprising query rewriting, retrieval, reranking, and response generation stages. Experimental results demonstrate the competitiveness of the system and extensive analyses are conducted to apprehend the impact of retrieval results to response generation. 고영중 교수: yjko@skku.edu, nlp.skku.edu, 자연어처리연구실: nlplab.skku.edu
-
- 작성일 2024-10-04
- 조회수 1623
-
-
- 우사이먼성일 교수(DASH Lab), CIKM 2024 국제 학술대회 논문 2편 개제 승인
- 1. (딥페이크 탐지) IDENTIFY: Integral Radial and Spatial Fourier Analysis for AI-Generated Image Authentication (full paper) 저자: Inzamamul Alam (소프트웨어학과 박사과정), Muhammad Shahid Muneer (소프트웨어학과 박사과정), and Simon S. Woo (인공지능대학원/소프트웨어학과) 본 연구에서는 새로운 생성형AI (디퓨전)기법으로 생성된 딥페이크를 Integral Radial and Spatial Fourier Analysis을 활용하여, 높은 성능으로 탐지하는 연구를 제안합니다. 특히, 본연구에서 제안하는 기법은 기존의 방법들보다 12-28%이상 높은 성능을 보여줍니다. IDENTIFY: Integral Radial and Spatial Fourier Analysis for AI-Generated Image Authentication, Inzamamul Alam, Muhammad Shahid Muneer, and Simon S. Woo*, 33rd ACM International Conference on Information & Knowledge Management (CIKM), Boise, Idaho, USA, October 2024 2. (빅데이터/E-commerce) Deep Journey Hierarchical Attention Networks for Conversion Predictions in Digital Marketing (full paper) 저자: Girim Ban (성균관대학교 석사 졸업/KT NexR), Hyeonseok Yun (KT NexR), Banseok Lee (KT NexR), David Sung (KT NexR), and Simon S. Woo (인공지능대학원/소프트웨어학과) 본 연구에서는 디지털 마케팅에서 유저 conversion prediction을 높일 수 있는 Deep Journey Hierarchical Attention Networks (DJHAN) 제안하여, 디지털 마케팅에서 중요한 Conversion Rate (CVR)과 Return on Ad Spend (ROAS)를 기존에 비해 높이고, 실제 수집된 마케팅 데이터(KT/NasMedia)에 적용하여 높은 성능을 보여주었습니다. Deep Journey Hierarchical Attention Networks for Predictions in Digital Marketing Girim Ban, Hyeonseok Yun, Banseok Lee, David Sung, and Simon S. Woo* 33rd ACM International Conference on Information & Knowledge Management (CIKM), Boise, Idaho, USA, October 2024
-
- 작성일 2024-08-28
- 조회수 1321
-
- 성균관대 인공지능대학원, '디지털혁신인재 심포지엄' 참가
- '2024 디지털혁신인재 심포지엄'이 지난 22일과 23일 양일간 서울 중구 대한상공회의소에서 개최되었다. 이번 행사에는 디지털 분야 대학원생, 대학생, 대학총장들이 참여하여 디지털혁신인재 양성을 위한 정책방향 등을 자유롭게 논의하였다. 22일(목) 디지털혁신인재 심포지엄 주요 관계자 분들이 성균관대 인공지능대학원 부스를 방문하여 이지형 사업총괄책임자가 설명을 하고 있다. 23일(금) 성균관대학교 유지범 총장이 인공지능대학원 부스를 방문하였다.
-
- 작성일 2024-08-26
- 조회수 800
-
-
- 김유성 교수 연구실 CIKM 2024 논문 2편 게재 승인
- CSI (Computer Systems and Intelligence) 연구실의 (지도교수:김유성) 논문 2편이 인공지능 분야의 Top-tier 국제학술대회인 CIKM (Conference on Information and Knowledge Management) 2024에 게재 승인되었습니다. 논문1 : Novelty-aware Graph Traversal and Expansion for Hierarchical Reinforcement Learning 은 박사과정 박종찬, 오승준군이 공동 제1저자로 참여하였습니다. 이 논문은 복잡하고 장기적인 목표를 가진 환경에서 행동 정책을 학습하는 어려움을 극복하기 위해 Novelty-aware Graph Traversal and Expansion (NGTE) 이라는 새로운 방법을 제안합니다. 기존의 그래프 기반 계층형 강화학습 방법은 비효율적인 하위 목표를 생성하는 문제를 가지고 있었으나, NGTE는 그래프 경계에서 최적의 노드를 하위 목표로 선택하고, 이 목표에 도달한 후 탐험 단계로 전환하여 그래프에 포함되지 못한 새로운 노드를 탐색합니다. NGTE는 노드간 거리를 예측하는 Distance Critic과 새로운 노드를 탐색하는 Novelty Critic을 사용하여 최적의 하위 목표 선택 및 신속한 그래프 확장을 가능하게 합니다. 네 발 로봇 내비게이션과 로봇 팔 조작과 같은 복잡한 환경에서 기존 방법들보다 우수한 성능을 보였으며, 특히 시작과 목표가 고정되어 환경 탐색이 중요한 환경에서 탁월한 성능을 발휘하였습니다. 논문2 : Self-supervised One-Stage Learning for RF-based Multi-Person Pose Estimation 은 석사과정 졸업생 신승환군이 저자로 참여하였습니다. 이 논문은 여러 사람이 있는 환경에서 무선 주파수(RF) 신호를 기반으로 비가시 영역의 위치한 다중 사람들의 자세를 추정하는 새로운 방법을 제안합니다. 기존의 RF 기반 방식은 복잡한 전처리 과정이나 깊은 신경망을 통해 신호를 임베딩했지만, 제안된 방법은 복수의 안테나로 수신된 RF 신호를 서브 그룹으로 나누고, 각 그룹을 공유된 단층 CNN 만으로 임베딩 후, 그룹들간 멀티 헤드 어텐션을 적용하여 보다 가볍고 효율적으로 설계될 수 있음을 보였습니다. 또한, 새로운 자가 지도 학습(Self-Supervised Learning) 방법을 제안하여 마스킹된 서브 그룹 단위 잠재 표현을 예측하여 자세 추정 성능을 더욱 향상시켰습니다. 실험 결과, 제안된 모델은 기존의 방법보다 학습 파라미터개수를 2% 만을 사용하면서 PCKh@0.5 정확도를 최대 15% 향상시켰으며, 특히 학습때 경험하지 않은 새로운 위치나 장애물 놓인 환경에서 더욱 뛰어난 성능을 발휘했습니다. CSI Lab. (지도교수 김유성 yskim525@skku.edu) | https://csi-skku.github.io
-
- 작성일 2024-07-17
- 조회수 1250