
Experimental Syntax using IBEX

Guest

June Choe
yjunechoe.github.io

Ph.D. Student in Linguistics
University of Pennsylvania (Philadelphia, PA, USA)

Research: psycholinguistics, computational linguistics

Will be answering questions in the chat!

2 / 78

https://yjunechoe.github.io/

Introduction to IBEX

Basic ideas
Navigating the platform

Scripting an experiment

Overview of critical components
Code walkthrough

Analysis of the results

Understanding the output format
Importing into Excel and R

Presentation Outline

Link to the slides: https://ibex-workshop-slides.netlify.app

3 / 78

https://spellout.net/ibexfarm
https://ibex-workshop-slides.netlify.app/

1. Introduction to IBEX

4 / 78

What is IBEX?
Stands for (I)nternet-(B)ased (EX)periments

DOES:

Host experiments on a webpage

Log user interactions with the experiment

Store data on a secure server

DOES NOT:

Recruit participants (see Amazon Mechanical Turk)

Provide an analysis of the results (see R, Python)

5 / 78

Where does IBEX fit?

6 / 78

Where does IBEX fit?

7 / 78

Navigating IBEX
Go to https://spellout.net/ibexfarm

Click create an account (or log in)

Click manage my experiments

Click Create a new experiment

Give it a unique name like "workshop_example"

Done!

8 / 78

https://spellout.net/ibexfarm

Navigating Ibex

0:00 / 0:25

9 / 78

chunk_includes

Stand-alone files go here

css_includes

Style specifications go here

data_includes

Experiment scripts go here

js_includes

Modules ("controllers") go here

results & server_state

Automatically generated/updated

Experiment file structure

10 / 78

chunk_includes

Stand-alone files go here

css_includes

Style specifications go here

data_includes

Experiment scripts go here

js_includes

Modules ("controllers") go here

results & server_state

Automatically generated/updated

Experiment file structure

11 / 78

2. Scripting an experiment

12 / 78

The script
Only need to modify one file: example_data.js (can also be renamed later)

At creation, the default file looks like this:

var shuffleSequence = seq("intro", sepWith("sep", seq("practice", rshuffle("s1", "s2"))),
sepWith("sep", rshuffle("q1", "q2")));
var practiceItemTypes = ["practice"];

var defaults = [
 "Separator", {
 transfer: 1000,
 normalMessage: "Please wait for the next sentence.",
 errorMessage: "Wrong. Please wait for the next sentence."
 },
 "DashedSentence", {
 mode: "self-paced reading"
 },
 "AcceptabilityJudgment", {
 as: ["1", "2", "3", "4", "5", "6", "7"],
 presentAsScale: true,
 instructions: "Use number keys or click boxes to answer.",
 leftComment: "(Bad)", rightComment: "(Good)"
 },

The above script creates this self-paced reading experiment.

13 / 78

https://spellout.net/ibexexps/example/example/experiment.html

Writing your own script
The example_data.js script works, but is not very friendly.

We'll use our own - template file - to demonstrate how the script works.

// Defaults and other settings //

//// Generates random number assigned to participants (Participant ID)
var randomCode = Math.random().toString(36).substr(2,9)
//// A message to show to participants at completion (useful for confirmation, raffle entry, etc.)
var completionMessage = "Thank you for your participation. Your participation code is: " +
randomCode

//// Show a progress bar at the top? (true/false)
var showProgressBar = false

//// Override default settings for controllers (parameters go inside the curly braces { })
var defaults = [
 "AcceptabilityJudgment", {
 as: ["1", "2", "3", "4", "5", "6", "7"],
 presentAsScale: true,
 instructions: "Use number keys or click boxes to answer.",
 leftComment: "(Bad)",
 rightComment: "(Good)"

The above script creates this acceptability rating experiment.

14 / 78

https://ibex-workshop-slides.netlify.app/ibex_files/full_exp.js
https://spellout.net/ibexexps/skku_ibex/workshop_acceptabilityJudgment/experiment.html

Editing the script

When you open the .js file in the
data_includes section of your
experiment on Ibex, it will open up a
text editor.

A simple layout

15 / 78

Editing the script

When you open the .js file in the
data_includes section of your
experiment on Ibex, it will open up a
text editor.

Options for editing the file:

Make changes directly on IBEX

Download the file and open with
an editor that supports
JavaScript syntax checking (e.g.,
Atom)

A simple layout

16 / 78

https://atom.io/

Parts of the Script

Settings:

Sets various options for the
experiment

Sequence (shuffleSequence):

Specifies the ordering of the
different parts of the experiment

Body (items):

Includes the actual material that
will be shown to the participants

A simple layout

17 / 78

Body

Forms

Introduction page, consent form,
directions, language background,
demographic information, etc.

Trials

All stimuli for the experiment

Practice, Critical, Filler

Can be accompanied by
messages, questions, etc.

A simple layout

18 / 78

Walkthrough of the components

19 / 78

Our first experiment
Study: We are interested in how people recover from garden-path sentences.

"While Anna dressed the kitten paid attention."

... *[VP dressed the kitten], ...

... ✓[VP dressed], the kitten ...

Hypothesis: Verbs that are frequently transitive make recovery more difficult,
compared to verbs that are frequently intransitive.

(transitive-biased) - "While Anna trained the kitten paid attention."

(intransitive-biased) - "While Anna dressed the kitten paid attention."

Prediction: Lower acceptability ratings in the transitive-biased condition
(gp.trans) than in the intransitive-biased condition (gp.intrans).

Note: this is a within-participant design!

20 / 78

[
 ["Trial name", Set #],
 "Trial Type",
 {s: "Sentence"}

]

[["Trial name", Set #],
 "Trial Type",
 {s: "Sentence"}]

Trial Syntax
For each trial in our acceptability judgment experiment, we write this code:

[["Trial name", Set #], "Trial Type", {s: "Sentence"}]

This is a list (array) of three elements (clearer with spacing):

We have one big bracket which contains three elements:

1. Another list, consisting of the name of the trial and set number

2. A string specifying the type of the trial (called Controllers)

3. A curly bracket (braces), which has "s" and the sentence separated by a colon

21 / 78

Translating the design to code
Example 1:

For the gp.trans condition, the first stimuli in our acceptability judgment
experiment is the sentence "While Anna trained the kitten paid attention".

[
 ["gp.trans", 1],
 "AcceptabilityJudgment",
 {s: "While Anna trained the kitten paid attention."}

]

22 / 78

Translating the design to code
Example 1:

For the gp.trans condition, the first stimuli in our acceptability judgment
experiment is the sentence "While Anna trained the kitten paid attention".

[
 ["gp.trans", 1],
 "AcceptabilityJudgment",
 {s: "While Anna trained the kitten paid attention."}

]

23 / 78

Translating the design to code
Example 1:

For the gp.trans condition, the first stimuli in our acceptability judgment
experiment is the sentence "While Anna trained the kitten paid attention".

[
 ["gp.trans", 1],
 "AcceptabilityJudgment",
 {s: "While Anna trained the kitten paid attention."}

]

24 / 78

Translating the design to code
Example 1:

For the gp.trans condition, the first stimuli in our acceptability judgment
experiment is the sentence "While Anna trained the kitten paid attention".

[
 ["gp.trans", 1],
 "AcceptabilityJudgment",
 {s: "While Anna trained the kitten paid attention."}

]

25 / 78

Translating the design to code
Example 1:

For the gp.trans condition, the first stimuli in our acceptability judgment
experiment is the sentence "While Anna trained the kitten paid attention".

[
 ["gp.trans", 1],
 "AcceptabilityJudgment",
 {s: "While Anna trained the kitten paid attention."}

]

26 / 78

Translating the design to code
Example 1:

For the gp.trans condition, the first stimuli in our acceptability judgment
experiment is the sentence "While Anna trained the kitten paid attention".

[
 ["gp.trans", 1],
 "AcceptabilityJudgment",
 {s: "While Anna trained the kitten paid attention."}

]

This can be put into a single line:

[["gp.trans",1], "AcceptabilityJudgment", {s: "While Anna trained the ki

27 / 78

Translating the design to code
Example 2:

For the gp.intrans condition, the first stimuli in our acceptability judgment
experiment is the sentence "While Anna dressed the kitten paid attention".

[
 ["gp.intrans", 1],
 "AcceptabilityJudgment",
 {s: "While Anna dressed the kitten paid attention."}

]

This can be put into a single line:

[["gp.intrans",1], "AcceptabilityJudgment", {s: "While Anna dressed the

28 / 78

Practice
Item set #2:

(transitive) - "Since Dave improved the department was satisfied."

(intransitive) - "Since Dave worried the counselor devised a plan."

<code here>

Hover for answer

29 / 78

Putting together the stimuli
Wrap in var items = [] and separate by a comma:

var item = [

 //// Set #1
 [["gp.trans",1], "AcceptabilityJudgment", {s: "While Anna trained the kitten paid attention."}],
 [["gp.intrans",1], "AcceptabilityJudgment", {s: "While Anna dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2], "AcceptabilityJudgment", {s: "Since Dave improved the department was
satisfied."}],
 [["gp.intrans",2], "AcceptabilityJudgment", {s: "Since Dave worried the counselor devised a
plan."}]

]

Good scripting habits:

Grouping item sets together and separating sets with new line

Adding comments (starts with two or more slashes //)

Saving often! (editing in IBEX not recommended)

30 / 78

Practice and Fillers
Practice Trials:

Presented at the beginning, accompanied by instructions and feedback

Filler Trials:

Mixed in with the critical trials

Both types of trials are invariant across conditions

This means that the first element of the big bracket can just be the Trial Name,
without assigning it a Set #:

Practice #1: "The car drove like a dream"

["practice-1",
 "AcceptabilityJudgment",
 {s: "The car drove like a dream."}]

31 / 78

Practice Filler-good Filler-bad Filler-catch

https://ibex-workshop-slides.netlify.app/?panelset=practice#panelset_practice
https://ibex-workshop-slides.netlify.app/?panelset=filler-good#panelset_filler-good
https://ibex-workshop-slides.netlify.app/?panelset=filler-bad#panelset_filler-bad
https://ibex-workshop-slides.netlify.app/?panelset=filler-catch#panelset_filler-catch

Practice and Fillers
Practice Trials:

Presented at the beginning, accompanied by instructions and feedback

Filler Trials:

Mixed in with the critical trials

Both types of trials are invariant across conditions

This means that the first element of the big bracket can just be the Trial Name,
without assigning it a Set #:

Good Filler #1: "When Harry fell, the audience was shocked."

["filler-good-01",
 "AcceptabilityJudgment",
 {s: "When Harry fell, the audience was shocked."}]

31 / 78

Practice Filler-good Filler-bad Filler-catch

https://ibex-workshop-slides.netlify.app/?panelset=practice#panelset_practice
https://ibex-workshop-slides.netlify.app/?panelset=filler-good#panelset_filler-good
https://ibex-workshop-slides.netlify.app/?panelset=filler-bad#panelset_filler-bad
https://ibex-workshop-slides.netlify.app/?panelset=filler-catch#panelset_filler-catch

Practice and Fillers
Practice Trials:

Presented at the beginning, accompanied by instructions and feedback

Filler Trials:

Mixed in with the critical trials

Both types of trials are invariant across conditions

This means that the first element of the big bracket can just be the Trial Name,
without assigning it a Set #:

Bad Filler #1: "When Tyler sneezed the driver, he passed a tissue."

["filler-bad-01",
 "AcceptabilityJudgment",
 {s: "When Tyler sneezed the driver, he passed a tissue."}]

31 / 78

Practice Filler-good Filler-bad Filler-catch

https://ibex-workshop-slides.netlify.app/?panelset=practice#panelset_practice
https://ibex-workshop-slides.netlify.app/?panelset=filler-good#panelset_filler-good
https://ibex-workshop-slides.netlify.app/?panelset=filler-bad#panelset_filler-bad
https://ibex-workshop-slides.netlify.app/?panelset=filler-catch#panelset_filler-catch

Practice and Fillers
Practice Trials:

Presented at the beginning, accompanied by instructions and feedback

Filler Trials:

Mixed in with the critical trials

Both types of trials are invariant across conditions

This means that the first element of the big bracket can just be the Trial Name,
without assigning it a Set #:

Catch Filler #1: "Please select 4 for this sentence."

["filler-catch-01",
 "AcceptabilityJudgment",
 {s: "Please select 4 for this sentence."}]

31 / 78

Practice Filler-good Filler-bad Filler-catch

https://ibex-workshop-slides.netlify.app/?panelset=practice#panelset_practice
https://ibex-workshop-slides.netlify.app/?panelset=filler-good#panelset_filler-good
https://ibex-workshop-slides.netlify.app/?panelset=filler-bad#panelset_filler-bad
https://ibex-workshop-slides.netlify.app/?panelset=filler-catch#panelset_filler-catch

Putting together the Body
var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment", {s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1], "AcceptabilityJudgment", {s: "While Anna trained the kitten paid attention."}],
 [["gp.intrans",1], "AcceptabilityJudgment", {s: "While Anna dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2], "AcceptabilityJudgment", {s: "Since Dave improved the department was
satisfied."}],
 [["gp.intrans",2], "AcceptabilityJudgment", {s: "Since Dave worried the counselor devised a
plan."}],

 //// Fillers (Good)
 ["filler-good-01","AcceptabilityJudgment", {s: "When Harry fell, the audience was shocked."}],

 //// Fillers (Bad)
 ["filler-bad-01","AcceptabilityJudgment", {s: "When Tyler sneezed the driver, he passed a
tissue."}],

 //// Fillers (Catch)
 ["filler-catch-01", "AcceptabilityJudgment", {s: "Please select 4 for this sentence."}]

Important: The ordering of the trials here is just for human readability. We
haven't yet told the program what order to present them in!

32 / 78

var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment",
{s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1],
"AcceptabilityJudgment", {s: "While Anna
trained the kitten paid attention."}],
 [["gp.intrans",1],
"AcceptabilityJudgment", {s: "While Anna
dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2],
"AcceptabilityJudgment", {s: "Since Dave
improved the department was satisfied."}],
 [["gp.intrans",2],
"AcceptabilityJudgment", {s: "Since Dave
worried the counselor devised a plan."}],

 //// Fillers (Good)
 ["filler-good-
01","AcceptabilityJudgment", {s: "When
Harry fell, the audience was shocked."}],

List the names of each trial in order:

 "practice-1",
 "gp.trans",
 "gp.intrans",
 "gp.trans",
 "gp.intrans",
 "filler-good-01",
 "filler-bad-01",
 "filler-catch-01"

Defining the Sequence

33 / 78

var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment",
{s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1],
"AcceptabilityJudgment", {s: "While Anna
trained the kitten paid attention."}],
 [["gp.intrans",1],
"AcceptabilityJudgment", {s: "While Anna
dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2],
"AcceptabilityJudgment", {s: "Since Dave
improved the department was satisfied."}],
 [["gp.intrans",2],
"AcceptabilityJudgment", {s: "Since Dave
worried the counselor devised a plan."}],

 //// Fillers (Good)
 ["filler-good-
01","AcceptabilityJudgment", {s: "When
Harry fell, the audience was shocked."}],

Wrap them in seq():

seq(
 "practice-1",
 "gp.trans",
 "gp.intrans",
 "gp.trans",
 "gp.intrans",
 "filler-good-01",
 "filler-bad-01",
 "filler-catch-01"
)

Defining the Sequence

34 / 78

var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment",
{s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1],
"AcceptabilityJudgment", {s: "While Anna
trained the kitten paid attention."}],
 [["gp.intrans",1],
"AcceptabilityJudgment", {s: "While Anna
dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2],
"AcceptabilityJudgment", {s: "Since Dave
improved the department was satisfied."}],
 [["gp.intrans",2],
"AcceptabilityJudgment", {s: "Since Dave
worried the counselor devised a plan."}],

 //// Fillers (Good)
 ["filler-good-
01","AcceptabilityJudgment", {s: "When
Harry fell, the audience was shocked."}],

Assign to shuffleSequence:

var shuffleSequence = seq(
 "practice-1",
 "gp.trans",
 "gp.intrans",
 "gp.trans",
 "gp.intrans",
 "filler-good-01",
 "filler-bad-01",
 "filler-catch-01"
)

Defining the Sequence

35 / 78

var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment",
{s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1],
"AcceptabilityJudgment", {s: "While Anna
trained the kitten paid attention."}],
 [["gp.intrans",1],
"AcceptabilityJudgment", {s: "While Anna
dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2],
"AcceptabilityJudgment", {s: "Since Dave
improved the department was satisfied."}],
 [["gp.intrans",2],
"AcceptabilityJudgment", {s: "Since Dave
worried the counselor devised a plan."}],

 //// Fillers (Good)
 ["filler-good-
01","AcceptabilityJudgment", {s: "When
Harry fell, the audience was shocked."}],

Assign to shuffleSequence:

var shuffleSequence = seq(
 "practice-1",
 "gp.trans",
 "gp.intrans",
 "gp.trans",
 "gp.intrans",
 "filler-good-01",
 "filler-bad-01",
 "filler-catch-01"
)

The shuffleSequence variable
handles the order of presentation of the
experiment materials that are stored
inside the items variable.

Defining the Sequence

36 / 78

var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment",
{s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1],
"AcceptabilityJudgment", {s: "While Anna
trained the kitten paid attention."}],
 [["gp.intrans",1],
"AcceptabilityJudgment", {s: "While Anna
dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2],
"AcceptabilityJudgment", {s: "Since Dave
improved the department was satisfied."}],
 [["gp.intrans",2],
"AcceptabilityJudgment", {s: "Since Dave
worried the counselor devised a plan."}],

 //// Fillers (Good)
 ["filler-good-
01","AcceptabilityJudgment", {s: "When
Harry fell, the audience was shocked."}],

Problems

var shuffleSequence = seq(
"practice-1",
 "gp.trans",
 "gp.intrans",
 "gp.trans",
 "gp.intrans",
"filler-good-01",
"filler-bad-01",
"filler-catch-01"
)

1. A lot of typing ("-02", "-03", ...)

Defining the Sequence

37 / 78

var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment",
{s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1],
"AcceptabilityJudgment", {s: "While Anna
trained the kitten paid attention."}],
 [["gp.intrans",1],
"AcceptabilityJudgment", {s: "While Anna
dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2],
"AcceptabilityJudgment", {s: "Since Dave
improved the department was satisfied."}],
 [["gp.intrans",2],
"AcceptabilityJudgment", {s: "Since Dave
worried the counselor devised a plan."}],

 //// Fillers (Good)
 ["filler-good-
01","AcceptabilityJudgment", {s: "When
Harry fell, the audience was shocked."}],

Problems

var shuffleSequence = seq(
 "practice-1",
"gp.trans",
"gp.intrans",
"gp.trans",
"gp.intrans",
"filler-good-01",
"filler-bad-01",
"filler-catch-01"
)

1. A lot of typing ("-02", "-03", ...)

2. Presentation order of some trials
should be random

Defining the Sequence

38 / 78

var items = [

 //// Practice
 ["practice-1", "AcceptabilityJudgment",
{s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1],
"AcceptabilityJudgment", {s: "While Anna
trained the kitten paid attention."}],
 [["gp.intrans",1],
"AcceptabilityJudgment", {s: "While Anna
dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2],
"AcceptabilityJudgment", {s: "Since Dave
improved the department was satisfied."}],
 [["gp.intrans",2],
"AcceptabilityJudgment", {s: "Since Dave
worried the counselor devised a plan."}],

 //// Fillers (Good)
 ["filler-good-
01","AcceptabilityJudgment", {s: "When
Harry fell, the audience was shocked."}],

Problems

var shuffleSequence = seq(
 "practice-1",
"gp.trans",
"gp.intrans",
"gp.trans",
"gp.intrans",
 "filler-good-01",
 "filler-bad-01",
 "filler-catch-01"
)

1. A lot of typing ("-02", "-03", ...)

2. Presentation order of some trials
should be random

3. How do we counterbalance critical
trials?

Defining the Sequence

39 / 78

var shuffleSequence = seq(
"practice-1",
"gp.trans",
"gp.intrans",
"gp.trans",
"gp.intrans",
"filler-good-01",
"filler-bad-01",
"filler-catch-01"
)

var shuffleSequence = seq(
startsWith("practice"),
startsWith("gp")
startsWith("filler")
)

1. Sequence: multiple selection
To save us from writing repetitive code, we use startsWith()

The function startsWith() matches all names that starts with the given string.

40 / 78

var shuffleSequence = seq(
 startsWith("practice"),
startsWith("gp")
startsWith("filler")
)

var shuffleSequence = seq(
 startsWith("practice"),
rshuffle(
 startsWith("gp"),
 startsWith("filler")
)
)

2. Sequence: randomization
To mix critical and filler trials in random order, we use rshuffle()

By wrapping both the critical trials (gp...) and the filler trials (filler...) in
rshuffle(), they are mixed together and presented in random order.

We can also write this out more compactly:

var shuffleSequence = seq(
 startsWith("practice"),
rshuffle(startsWith("gp"), startsWith("filler"))
)

41 / 78

3. Sequence: counterbalancing
The set number in our critical trials automatically handles counterbalancing:

[["gp.trans", 1], ...], [["gp.intrans", 1], ...], [["gp.trans", 2], ...], [["gp.intrans", 2], ...]

We just need to add a counter inside items to track group assignment:

["setcounter", "__SetCounter__", { }]

42 / 78

3. Sequence: counterbalancing
To use the counter, you need to modify both items and shuffleSequence:

var items = [
 ...
 ["setcounter", "__SetCounter__", { }], // The counter is defined
 ...
]

var shuffleSequence = seq(
 "setcounter", // The counter is incremented at the start
 ...
)

Note: Sometimes you want to place "setcounter" in the middle of the experiment

var shuffleSequence = seq(
 "intro"
 "consent",
 "setcounter",
 ...
)

43 / 78

Body and Sequence together
// Presentation Order //
var shuffleSequence = seq(
 "setcounter",
 startsWith("practice"),
 rshuffle(startsWith("gp"), startsWith("filler"))
)

// Experiment Materials //
var items = [

 //// Counter
 ["setcounter", "__SetCounter__", { }],

 //// Practice
 ["practice-1", "AcceptabilityJudgment", {s: "The car drove like a dream."}],

 // Critical Trials //

 //// Set #1
 [["gp.trans",1], "AcceptabilityJudgment", {s: "While Anna trained the kitten paid attention."}],
 [["gp.intrans",1], "AcceptabilityJudgment", {s: "While Anna dressed the kitten paid attention."}],

 //// Set #2
 [["gp.trans",2], "AcceptabilityJudgment", {s: "Since Dave improved the department was
satisfied."}],
 [["gp.intrans",2], "AcceptabilityJudgment", {s: "Since Dave worried the counselor devised a

Just need one more step: Settings

44 / 78

Settings (Basic)
Consist of miscellaneous options that we can put at the top of the script.

At the very least, we want to do two things:

1. Generate unique participant IDs

2. Specify the parameters for the method design

45 / 78

Settings (Basic)
Consist of miscellaneous options that we can put at the top of the script.

At the very least, we want to do two things:

1. Generate unique participant IDs (randomCode)

2. Specify the parameters for the method design (defaults)

// Defaults and other settings //

//// Generates random number assigned to participants (Participant ID)
var randomCode = Math.random().toString(36).substr(2,9)

//// Override default settings for controllers (parameters go inside the curly braces { })
var defaults = [
 "AcceptabilityJudgment", {
 as: ["1", "2", "3", "4", "5", "6", "7"],
 presentAsScale: true,
 instructions: "Use number keys or click boxes to answer.",
 leftComment: "(Bad)",
 rightComment: "(Good)"
 }]

More details in the AcceptabilityJudgment section of the documentation.

46 / 78

https://github.com/addrummond/ibex/blob/master/docs/manual.md

The defaults variable
The specifications in defaults set the design of the trials:

var defaults = [
 "AcceptabilityJudgment", {
 as: ["1", "2", "3", "4", "5", "6", "7"],
 presentAsScale: true,
 instructions: "Use number keys or click boxes to answer.",
 leftComment: "(Bad)",
 rightComment: "(Good)"
 }]

47 / 78

Another defaults example
Suppose you'd like to show participants multiple sentences but have them only rate
the acceptability of one of the sentences.

var defaults = [
 "AcceptabilityJudgment", {
 ...
 instructions: "Rate how natural Speaker B's response sounds.",
 ...
 }]

[["ConditionA", 1],
 "AcceptabilityJudgment",
 {s: ["div",
 ["p", "Speaker A: Who left this sandwich on the table?"]
 ["p", "Speaker B: Fred did."]
]}]

Note: You can show multiple lines of text using html tags like "p" and "div" - more
on that later

48 / 78

Code Output

https://ibex-workshop-slides.netlify.app/?panelset1=code#panelset1_code
https://ibex-workshop-slides.netlify.app/?panelset1=output#panelset1_output

Another defaults example
Suppose you'd like to show participants multiple sentences but have them only rate
the acceptability of one of the sentences.

48 / 78

Code Output

https://ibex-workshop-slides.netlify.app/?panelset1=code#panelset1_code
https://ibex-workshop-slides.netlify.app/?panelset1=output#panelset1_output

Settings (Miscellaneous)
You can also change other options, such as showing a message at the end:

var completionMessage

And whether to show a progress bar:

var showProgressBar

//// Show a progress bar at the top? (true/false)
var showProgressBar = false

You can learn more about these various elements in the Miscellaneous options
section of the documentation.

//// A message to show to participants at completion (useful for confirm
var completionMessage = "Thank you for your participation. Your particip

49 / 78

https://github.com/addrummond/ibex/blob/master/docs/manual.md

A minimal experiment
We now have a minimally working experiment!

// Defaults and other settings //

//// Generates random number assigned to participants (Participant ID)
var randomCode = Math.random().toString(36).substr(2,9)
//// A message to show to participants at completion (useful for confirmation, raffle entry, etc.)
var completionMessage = "Thank you for your participation. Your participation code is: " +
randomCode

//// Show a progress bar at the top? (true/false)
var showProgressBar = false

//// Override default settings for controllers (parameters go inside the curly braces { })
var defaults = [
 "AcceptabilityJudgment", {
 as: ["1", "2", "3", "4", "5", "6", "7"],
 presentAsScale: true,
 instructions: "Use number keys or click boxes to answer.",
 leftComment: "(Bad)",
 rightComment: "(Good)"
 }]

// Presentation Order //

var shuffleSequence = seq(
 "setcounter",

50 / 78

https://spellout.net/ibexexps/skku_ibex/workshop_minimal/experiment.html

Interim Summary #1
What we've covered:

We use a special syntax to create stimuli

We store all the materials for our experiment inside items

We specify the order of presentation inside shuffleSequence

We set various options at the top of the script, such as defaults for the
experiment method and the assignment of participant ID

A few more things to know:

How can we add plain text?

Introduction page, consent form, directions, etc.

How can we extend this workflow for other experimental designs?

Self-paced reading, comprehension tasks, etc.

51 / 78

The "Message" controller
The "Message" controller shows text on a new page.

It is a list of 3 elements, similar to the "AcceptabilityJudgement" items:

["Trial name", "Message", {html: text}]

Trial name is used to reference the trial in sequencing, as seen earlier

"Message" tells IBEX that this trial just shows text on a new screen

Inside of the curly braces {} we can add text in the html parameter:

["intro", "Message", {html: ["p", "Welcome to the experiment!"]}]

Notes on html:

The code ["p", "<your text here>"] prints a single paragraph of text.

The "p" is called an HTML tag and there are many others (most common: "div",
"strong", "em"), but usually these don't get very complicated.

52 / 78

https://www.w3schools.com/TAGs/

Message examples

A message composed of a single paragraph:

["intro", "Message", {html: ["p", "Welcome to the experiment!"]}]

53 / 78

1-paragraph n-paragraphs consent keypress separator

https://ibex-workshop-slides.netlify.app/?panelset2=1-paragraph#panelset2_1-paragraph
https://ibex-workshop-slides.netlify.app/?panelset2=n-paragraphs#panelset2_n-paragraphs
https://ibex-workshop-slides.netlify.app/?panelset2=consent#panelset2_consent
https://ibex-workshop-slides.netlify.app/?panelset2=keypress#panelset2_keypress
https://ibex-workshop-slides.netlify.app/?panelset2=separator#panelset2_separator

Message examples

A message composed of multiple paragraphs must be combined inside a "div":

["intro", "Message", {html:
 ["div",
 ["p", "Welcome to the experiment!"],
 ["p", "Here's another paragraph."],
 ["p", "These paragraphs are all wrapped inside \"div\"."]
]
}]

Note: You can escape special characters like quotes " with a backslash \

53 / 78

1-paragraph n-paragraphs consent keypress separator

https://ibex-workshop-slides.netlify.app/?panelset2=1-paragraph#panelset2_1-paragraph
https://ibex-workshop-slides.netlify.app/?panelset2=n-paragraphs#panelset2_n-paragraphs
https://ibex-workshop-slides.netlify.app/?panelset2=consent#panelset2_consent
https://ibex-workshop-slides.netlify.app/?panelset2=keypress#panelset2_keypress
https://ibex-workshop-slides.netlify.app/?panelset2=separator#panelset2_separator

Message examples

Ask for consent with a set of consent... parameters

["consent", "Message", {
 html: ["p", "Do you consent?"],
 consentRequired: true,
 consentMessage: "I consent."
}]

53 / 78

1-paragraph n-paragraphs consent keypress separator

https://ibex-workshop-slides.netlify.app/?panelset2=1-paragraph#panelset2_1-paragraph
https://ibex-workshop-slides.netlify.app/?panelset2=n-paragraphs#panelset2_n-paragraphs
https://ibex-workshop-slides.netlify.app/?panelset2=consent#panelset2_consent
https://ibex-workshop-slides.netlify.app/?panelset2=keypress#panelset2_keypress
https://ibex-workshop-slides.netlify.app/?panelset2=separator#panelset2_separator

Message examples

Use the transfer argument to specify how the participant can move on.

Setting transfer to "keypress" removes the default "Click here to continue."
message and allows participants to proceed with the press of any key.

["move_on", "Message", {
 html: ["div",
 ["p", "The option for \"transfer\" is \"keypress\""],
 ["em", "Press any key to continue."]
],
 transfer: "keypress"
}]

53 / 78

1-paragraph n-paragraphs consent keypress separator

https://ibex-workshop-slides.netlify.app/?panelset2=1-paragraph#panelset2_1-paragraph
https://ibex-workshop-slides.netlify.app/?panelset2=n-paragraphs#panelset2_n-paragraphs
https://ibex-workshop-slides.netlify.app/?panelset2=consent#panelset2_consent
https://ibex-workshop-slides.netlify.app/?panelset2=keypress#panelset2_keypress
https://ibex-workshop-slides.netlify.app/?panelset2=separator#panelset2_separator

Message examples

You might want to insert a page that separates the trials:

["sep", "Message", {
 html: ["em", "Press any key to continue."],
 transfer: "keypress"
}]

You can do so using sepWith() in shuffleSequence:

var shuffleSequence = seq(
 "practice",
 sepWith("sep", rshuffle(startsWith("gp"), startsWith("filler")))
)

53 / 78

1-paragraph n-paragraphs consent keypress separator

https://ibex-workshop-slides.netlify.app/?panelset2=1-paragraph#panelset2_1-paragraph
https://ibex-workshop-slides.netlify.app/?panelset2=n-paragraphs#panelset2_n-paragraphs
https://ibex-workshop-slides.netlify.app/?panelset2=consent#panelset2_consent
https://ibex-workshop-slides.netlify.app/?panelset2=keypress#panelset2_keypress
https://ibex-workshop-slides.netlify.app/?panelset2=separator#panelset2_separator

Putting everything together
Here's a complete experiment with several Message controllers added.

// Defaults and other settings //

//// Generates random number assigned to participants (Participant ID)
var randomCode = Math.random().toString(36).substr(2,9)
//// A message to show to participants at completion (useful for confirmation, raffle entry, etc.)
var completionMessage = "Thank you for your participation. Your participation code is: " +
randomCode

//// Show a progress bar at the top? (true/false)
var showProgressBar = false

//// Override default settings for controllers (parameters go inside the curly braces { })
var defaults = [
 "AcceptabilityJudgment", {
 as: ["1", "2", "3", "4", "5", "6", "7"],
 presentAsScale: true,
 instructions: "Use number keys or click boxes to answer.",
 leftComment: "(Bad)",
 rightComment: "(Good)"
 }]

// Presentation Order //

var shuffleSequence = seq(
 "intro",
 "consent",

54 / 78

https://spellout.net/ibexexps/skku_ibex/workshop_acceptabilityJudgment/experiment.html

Getting the experiment up
So we have a new script, but how do we host the experiment?

1. Go to the IBEX website and log in.

2. Click on your experiment (or create one if you haven't already).

3. Click edit next to the example_data.js file in the data_includes section.

4. Delete its contents and copy paste your new code.

5. Click on the link at the top of the page.

The URL shown in your browser is the link to your experiment!

https://spellout.net/ibexexps/skku_ibex/workshop_minimal/experiment.html

55 / 78

https://spellout.net/ibexfarm/
https://spellout.net/ibexexps/skku_ibex/workshop_minimal/experiment.html

A different experiment
Suppose that after a pilot experiment, we find acceptability judgments to be
inappropriate for answering our research question.

We want a finer-grained measure of recovery difficulty, so we'd like to change the
experiment to self-paced reading and look at differences in reading time.

Given our existing template, we take the following steps:

1. Go to the documentation and find a Controller for self-paced reading.

2. Specify the design of that controller in the defaults variable.

3. Change our trials in items from "acceptabilityJudgment" to that Controller.

4. Make changes to the text of the "Messages" items (e.g., directions).

Let's go look at the documentation!

56 / 78

https://github.com/addrummond/ibex/blob/master/docs/manual.md

"DashedSentence" Controller
The "DashedSentence" Controller creates self-paced reading trials.

We first re-write defaults to specify appropriate settings for "DashedSentence".

var defaults = [
 "DashedSentence", {
 mode: "self-paced reading",
 display: "dashed"
 }]

Then, we replace "acceptabilityJudgment" with "DashedSentence" in items.

var items = [
 ...
 [["gp.trans",1], "DashedSentence", {s: "While Anna trained the kitten
 [["gp.intrans",1], "DashedSentence", {s: "While Anna dressed the kitte
 [["gp.trans",2], "DashedSentence", {s: "Since Dave improved the depart
 [["gp.intrans",2], "DashedSentence", {s: "Since Dave worried the couns
 ...
]

57 / 78

Our second experiment
Finally, after re-writing some of the "Message" items, we have a new experiment!

// Defaults and other settings //

//// Generates random number assigned to participants (Participant ID)
var randomCode = Math.random().toString(36).substr(2,9)
//// A message to show to participants at completion (useful for confirmation, raffle entry, etc.)
var completionMessage = "Thank you for your participation. Your participation code is: " +
randomCode

//// Show a progress bar at the top? (true/false)
var showProgressBar = false

//// Override default settings for controllers (parameters go inside the curly braces { })
var defaults = [
 "DashedSentence", {
 mode: "self-paced reading",
 display: "dashed"
 }]

// Presentation Order //

var shuffleSequence = seq(
 "intro",
 "consent",
 "directions",
 startsWith("practice"),
 "setcounter",

58 / 78

https://spellout.net/ibexexps/skku_ibex/workshop_DashedSentence/experiment.html

Question and Form Controllers

You can use the Question controller to ask Yes/No comprehension questions:

[["YesNo_example",1],
"Question",
{q: "Was the kitten trained?", as: ["Yes", "No"]}]

59 / 78

Yes/No Forced-Choice-1 Forced-Choice-2 Free-Response

https://ibex-workshop-slides.netlify.app/?panelset3=yes%2Fno#panelset3_yes%2Fno
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-1#panelset3_forced-choice-1
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-2#panelset3_forced-choice-2
https://ibex-workshop-slides.netlify.app/?panelset3=free-response#panelset3_free-response

Question and Form Controllers

The as parameter sets the answer choices presented to participants.

[["FC1_example",1], "Question", {
 instructions: "Choose the more natural sentence.",
 as: ["Who did you see that ate bread?",
 "What did you see the girl who ate?"]}]

59 / 78

Yes/No Forced-Choice-1 Forced-Choice-2 Free-Response

https://ibex-workshop-slides.netlify.app/?panelset3=yes%2Fno#panelset3_yes%2Fno
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-1#panelset3_forced-choice-1
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-2#panelset3_forced-choice-2
https://ibex-workshop-slides.netlify.app/?panelset3=free-response#panelset3_free-response

Question and Form Controllers

You can ask for continuations by modifying the q parameter.

[["FC2_example",1], "Question", {
 q: "While Anna dressed the baby ______",
 instructions: "Choose the more natural continuation.",
 as: ["started to cry.", "he started to cry."]}]

59 / 78

Yes/No Forced-Choice-1 Forced-Choice-2 Free-Response

https://ibex-workshop-slides.netlify.app/?panelset3=yes%2Fno#panelset3_yes%2Fno
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-1#panelset3_forced-choice-1
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-2#panelset3_forced-choice-2
https://ibex-workshop-slides.netlify.app/?panelset3=free-response#panelset3_free-response

Question and Form Controllers

Use Form controller with the "textarea" HTML tag to collect a free response:

[["FR_example",1],
 "Form", {html: ["div",
 ["em", "Fill out a continuation for the sentence fragment:"],
 ["p", "While Anna dressed the baby ______"],
 ["textarea"]
]}]

59 / 78

Yes/No Forced-Choice-1 Forced-Choice-2 Free-Response

https://ibex-workshop-slides.netlify.app/?panelset3=yes%2Fno#panelset3_yes%2Fno
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-1#panelset3_forced-choice-1
https://ibex-workshop-slides.netlify.app/?panelset3=forced-choice-2#panelset3_forced-choice-2
https://ibex-workshop-slides.netlify.app/?panelset3=free-response#panelset3_free-response

3. Analysis of the results

60 / 78

Where to find the data
The data collected in the experiment can be found on the experiment page, under
the results section.

The section comprises of two files, of which results is the better formatted one.

61 / 78

The results file
results is a csv file (comma separated values), meaning that each line contains a
set of values that are separated by a comma.

The lines that start with a pound symbol "#" are comments that include metadata.

They tell us what variables each comma-separated values correspond to.

62 / 78

The variables
All IBEX experiments return these 7 variables:

1. Time

2. Participant ID

3. Controller Name

4. Item number

5. Element number

6. Type

7. Group

63 / 78

The variables
Generally, we only care about 4 of these:

1. Time

2. Participant ID: A unique ID for each participant.

3. Controller Name: The controller that the values are from.

4. Item number

5. Element number

6. Type: The name of the trial.

7. Group: The item group number.

The last two variables uniquely identify each trial created in items:

[["Type", Group], "Trial Type", {s: "Sentence"}]

[["gp.trans", 1], "DashedSentence", {s: "..."}]

64 / 78

The variables
Depending on the experiment, IBEX returns other variables specific to the design.

For self-paced reading with "DashedSentence", we get 5 more variables:

1. Word number - The index of the word in the sentence.

2. Word - The text of that word.

3. Reading time - Reading time for that word.

4. Newline? - 0 or 1 indicating whether there was a line break.

5. Sentence - The text of the sentence.

These are also outlined in the documentation for "DashedSentence", so you know
what variables to expect beforehand.

For an actual analysis of the results, we need the results to be imported
somewhere as a data frame (where every value is a cell and each variable forms a
column).

65 / 78

https://github.com/addrummond/ibex/blob/master/docs/manual.md

Importing - Excel
Steps for importing the data into Excel:

1. Copy the text of the results file from IBEX

2. Paste into the first column of an Excel spreadsheet

3. Highlight that column and click Data tab -> Filter

4. Click on the dropdown arrow that appears at the top cell

5. Click Text Filters -> Begins With... and type in "#"

6. Go to Home tab -> Find & Select, check "Visible cells only", and click OK

7. Right click on any part of the sheet and select Delete Row

8. Click the first column again and go to Data tab -> Text to Columns

9. Check "Delimited", "Comma", then "General" for each prompt

10. Add an empty row at the top and manually type in the column names from the
comments of the original results file

66 / 78

Importing - Excel

0:00 / 0:57

67 / 78

Complex results
Some Controllers return more than 1 line of results, making thing complicated.

For example, each AcceptabilityJudgment trial adds two lines to results:

In cases like these, using a processing script (R/Python) is recommended

68 / 78

Importing - R
Steps for importing into R:

1. Download the results file from IBEX

2. Open it with the read_ibex() function from this read_ibex.R script

source("read_ibex.R")
results <- read_ibex("SPR_results.txt")

Controller name Type Group Word number Word Reading time
92 DashedSentence gp.intrans 2 8 plan. 261
75 DashedSentence gp.trans 1 5 kitten 277
95 DashedSentence filler-bad-01 NULL 3 sneezed 339
Sentence (or sentence MD5)
92 Since Dave worried the counselor devised a plan.
75 While Anna trained the kitten paid attention.
95 When Tyler sneezed the driver%2C he passed a tissue.

69 / 78

DashedSentence AcceptabilityJudgment

https://github.com/yjunechoe/IBEX-Workshop-Materials/blob/master/R%20codes/read_ibex.R
https://ibex-workshop-slides.netlify.app/?panelset4=dashedsentence#panelset4_dashedsentence
https://ibex-workshop-slides.netlify.app/?panelset4=acceptabilityjudgment#panelset4_acceptabilityjudgment

Importing - R
Steps for importing into R:

1. Download the results file from IBEX

2. Open it with the read_ibex() function from this read_ibex.R script

source("read_ibex.R")
results <- read_ibex("Acceptability_results.txt")

Controller name Type Group
16 AcceptabilityJudgment gp.intrans 2
5 AcceptabilityJudgment filler-catch-01 NULL
2 AcceptabilityJudgment gp.intrans 2
Sentence (or sentence MD5) Answer
16 Since Dave worried the counselor devised a plan. 7
5 Please select 4 for this sentence. 4
2 Since Dave worried the counselor devised a plan. 4

69 / 78

DashedSentence AcceptabilityJudgment

https://github.com/yjunechoe/IBEX-Workshop-Materials/blob/master/R%20codes/read_ibex.R
https://ibex-workshop-slides.netlify.app/?panelset4=dashedsentence#panelset4_dashedsentence
https://ibex-workshop-slides.netlify.app/?panelset4=acceptabilityjudgment#panelset4_acceptabilityjudgment

Break

70 / 78

Exercise

71 / 78

Task
The experiment script incomplete.js has some missing pieces.

//////////////////
//// Exercise ////
//
// There are a total of EIGHT tasks for you to complete in this script.
// The instructions for each task are written out as comments.
// Some parts of the task are completed for you and your job is to fill in the blanks ______.
//
// Make sure to consult the IBEX manual! -
https://github.com/addrummond/ibex/blob/master/docs/manual.md
//
//////////////////

// Task #1: Send a completion message that says "Thank you for your participation!"
var ______ = "______"

var showProgressBar = false

var defaults = [
 "AcceptabilityJudgment", {
 as: ______, // Task #2: Make the acceptability judgment scale from 1-5
 presentAsScale: true,
 instructions: "Use number keys or click boxes to answer.",
 leftComment: "(Bad)",
 rightComment: "(Good)"
 }]

72 / 78

https://ibex-workshop-slides.netlify.app/ibex_files/incomplete.js

Task
Directions:

1. Download incomplete.js

2. Create a new experiment on your ibex account called "WorkshopExercise" and
replace the contents of example_data.js in the data_includes section with
incomplete.js.

3. Click edit and follow the directions in the script to fill in the blanks.

4. Complete as many of tasks as possible (8 total).

If you finish, save the edits and click on your experiment link at the top of the
page. Check to see that your experiment looks similar to this complete version.

Make sure to use the IBEX documentation!

https://github.com/addrummond/ibex/blob/master/docs/manual.md

73 / 78

https://ibex-workshop-slides.netlify.app/ibex_files/incomplete.js
https://spellout.net/ibexexps/skku_ibex/workshop_exercise/experiment.html
https://github.com/addrummond/ibex/blob/master/docs/manual.md

Resources
Materials from this presentation are on Google Drive.

More resources from the community:

The official IBEX documentation.

The official IBEX google group to ask questions.

UPDATE (01/01/2021)

There is a new version of IBEX at a different link: https://ibex.spellout.net

74 / 78

https://drive.google.com/drive/folders/1jgnR0zSPgcsikmc3sT0OW0Jkndl9yar5?usp=sharing
https://github.com/addrummond/ibex/blob/master/docs/manual.md
https://groups.google.com/g/ibexexperiments/c/-PTeVD39h9o
https://ibex.spellout.net/

Resources
Materials from this presentation are on Google Drive.

More resources from the community:

The official IBEX documentation.

The official IBEX google group to ask questions.

UPDATE (01/01/2021)

New feature: results can be downloaded as a spreadsheet (full list of changes).

75 / 78

https://drive.google.com/drive/folders/1jgnR0zSPgcsikmc3sT0OW0Jkndl9yar5?usp=sharing
https://github.com/addrummond/ibex/blob/master/docs/manual.md
https://groups.google.com/g/ibexexperiments/c/-PTeVD39h9o
https://gist.github.com/addrummond/b345d3d4f23436838e52afbe880ebbd9

Resources
Materials from this presentation are on Google Drive.

More resources from the community:

The official IBEX documentation.

The official IBEX google group to ask questions.

Other platforms

PCIbex (Penn Controller for IBEX): https://www.pcibex.net

PsychoPy: https://www.psychopy.org

_magpie (minimal architecture for the generation of portable interactive
experiments): https://magpie-ea.github.io/magpie-site

76 / 78

https://drive.google.com/drive/folders/1jgnR0zSPgcsikmc3sT0OW0Jkndl9yar5?usp=sharing
https://github.com/addrummond/ibex/blob/master/docs/manual.md
https://groups.google.com/g/ibexexperiments/c/-PTeVD39h9o
https://www.pcibex.net/
https://www.psychopy.org/
https://magpie-ea.github.io/magpie-site

Resources
Materials from this presentation are on Google Drive.

More resources from the community:

The official IBEX documentation.

The official IBEX google group to ask questions.

Platforms to recruit participants for your IBEX experiment

MTurk (Amazon Mechanical Turk): https://www.mturk.com

Prolific https://www.prolific.co

77 / 78

https://drive.google.com/drive/folders/1jgnR0zSPgcsikmc3sT0OW0Jkndl9yar5?usp=sharing
https://github.com/addrummond/ibex/blob/master/docs/manual.md
https://groups.google.com/g/ibexexperiments/c/-PTeVD39h9o
https://www.mturk.com/
https://www.prolific.co/

Acknowledgments
Many thanks to...

June Choe for assistance with the slides (esp. interactive components)

Brian Dillon (UMass Amherst) for permission to use materials from the LSA
Minicourse "Doing Experiments for Linguists" (Brian Dillon & Rodica Ivan)

Jon Sprouse (UConn) for permission to use materials from LSA 2016,
Experimental Syntax Workshop

Link to Jon's current course on Introduction to Experimental Syntax
Methods: https://sprouse.uconn.edu/courses/experimental-syntax

78 / 78

https://sprouse.uconn.edu/courses/experimental-syntax

