[Prof. Woo, Simon Sungil] DASH Lab, Approval for AAAI 2024 publication
2024-01-30
[Prof. Woo, Simon Sungil] DASH Lab, Approval for AAAI 2024 publication [ Paper #1 ] ※ Paper Title: All but One: Surgical Concept Erasing with Model Preservation in Text-to-Image Diffusion Models ※ paper link: https://doi.org/10.48550/arXiv.2312.12807 Seunghoo Hong†, Juhun Lee†, and Simon S. Woo*, “All but One: Surgical Concept Erasing with Model Preservation in Text-to-Image Diffusion Models”, Proceedings of the 38th annual AAAI Conference on Artificial Intelligence (AAAI), 2024. Abstract: Text-to-Image models such as Stable Diffusion have shown impressive image generation synthesis, thanks to the utilization of large-scale datasets. However, these datasets may contain sexually explicit, copyrighted, or undesirable content, which allows the model to directly generate them. Given that retraining these large models on individual concept deletion requests is infeasible, fine-tuning algorithms have been developed to tackle concept erasing in diffusion models. While these algorithms yield good concept erasure, they all present one of the following issues: 1) the corrupted feature space yields synthesis of disintegrated objects, 2) the initially synthesized content undergoes a divergence in both spatial structure and semantics in the generated images, and 3) sub-optimal training updates heighten the model's susceptibility to utility harm. These issues severely degrade the original utility of generative models. In this work, we present a new approach that solves all of these challenges. We take inspiration from the concept of classifier guidance and propose a surgical update on the classifier guidance term while constraining the drift of the unconditional score term. Furthermore, our algorithm empowers the user to select an alternative to the erasing concept, allowing for more controllability. Our experimental results show that our algorithm not only erases the target concept effectively but also preserves the model’s generation capability. [ Paper #2 ] ※ Paper Title: Layer Attack Unlearning: Fast and Accurate Machine Unlearning viaLayer Level Attack and Knowledge Distillation ※ paper link: https://arxiv.org/pdf/2312.16823.pdf Hyunjune Kim, Sangyong Lee, and Simon S. Woo*, “Layer Attack Unlearning: Fast and Accurate Machine Unlearning via Layer Level Attack and Knowledge Distillation”, Proceedings of the 38th annual AAAI Conference on Artificial Intelligence (AAAI), 2024. Abstract: Recently, serious concerns have been raised about the privacy issues related to training datasets in machine learning algorithms when including personal data. Various regulations in different countries, including the GDPR, grant individuals to have personal data erased, known as ‘the right to be forgotten’ or ‘the right to erasure’. However, there has been less research on effectively and practically deleting the requested personal data from the training set while not jeopardizing the overall machine learning performance. In this work, we propose a fast and novel machine unlearning paradigm at the layer level called layer attack unlearning, which is highly accurate and fast compared to existing machine unlearning algorithms. We introduce the Partial-PGD algorithm to locate the samples to forget efficiently. In addition, we only use the last layer of the model inspired by the Forward-Forward algorithm for unlearning process. Lastly, we use Knowledge Distillation (KD) to reliably learn the decision boundaries from the teacher using soft label information to improve accuracy performance. We conducted extensive experiments with SOTA machine unlearning models and demonstrated the effectiveness of our approach for accuracy and end-to-end unlearning performance.