
EM PROBLEM SET 6 2019

1. Consider two concentric (same axio) cylindrical conducting cheets with vadii R, and Rz, R, < Rz, with vadii R and Rz, R, < Rz, Suppose a current I flows along each conductor, but in opposite directions for the inner and outer conductor:

Since \vec{J} , $\vec{B} = 0$, the magnetic field produced has no vadial component (it is not diverging or converging).

So it curls around the currents. Symmetry \implies the magnetic field can also depend on the vadial

distance or from the axis of the cylinders. Determine (using Ampere's law) B (m) (i) ~< R, (ii) R, < ~ < R2 (iii) ~> R2 2. Consuler a straight cylindrish uire of vadius R. Suppose there is a current flowing, and the magnitude of the current density depends only on the distance v from the centre of the write,

and ha the form is (m) = 2 m)

Determine the current I in the wive,

Hint: consider the current in

a circular ship between r and r+dr, and "sum" (integrate) over all etrips from r=0 to r= R