
.

0.1 Completing Ampere’s law - the “displacement current”

Up until now, we have been using a version of Ampere’s law applicable to magnetostatics
(time-independent charge and current densities which means time-independent electric
and magnetic fields):

~∇× ~B(~r) = 1
ε0c2

~j(~r).

However, once we introduce time dependence, an additional term called the “displacement
current” must be included in Ampere’s law.

To understand why we need to modify Ampere’s law, let’s go back an reconsider an
analysis we did earlier. We considered a closed surface S enclosing a volume V . The net
flow of current through the closed surface S is∮

S

~j(~r) · d~S = ε0c
2
∮
S
(~∇× ~B(~r)) · d~S (using Ampere′s law)

=
∫
V
d3~r ~∇ · (~∇× ~B(~r)) (using Gauss′s law)

= 0

as a result of the vector identity ~∇ · (~∇ × ~V (~r)) for any vector field ~V (~r). The fact
that the net flow of current through any closed surface S is zero is consistent with the
fact that in magnetostatics, we do not consider “sources” or “sinks” for currents (such as
battery terminals), so the net flow of current into a closed surface must match the net
flow outward, and the total charge inside the surface does not change with time.

However, in electrodynamics, we do allow for the existence of current sources and
sinks, so that currents can flow outward or inward through the closed surface, and the
charge enclosed by the surface changes with time (since currents are flows of charges).
The statement

∮
S
~j(~r) ·d~S = 0 applicable to magnetostatics must be replaced by the more

general statement ∮
S

~j(~r, t) · d~S = − d

dt

∫
V
d3~r ρ(~r, t),

where V is the volume enclosed by the surface S and ρ(~r, t) is the charge density. This is
simply a statement of conservation of charge. The integral

∫
V d

3~r ρ(~r, t) is the total charge
inside the surface S. If there is a net flow of current out through the surface S, the left
hand side of this equation is nonzero and positive; it means that charge is flowing out of
the volume V , and so the total charge

∫
V d

3~r ρ(~r, t) inside V must decrease with time i.e.
d
dt

∫
V d

3~r ρ(~r, t) is negative. The minus sign in the equation is there because when current
flows out through S, the charge inside S decreases; and when current flows in through S,
the charge inside S increases.

Using Gauss’s law, ∮
S

~j(~r, t) · d~S =
∫
V

~∇ ·~j(~r, t) d3~r,
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and so the equation stating conservation of charge becomes

∫
V

~∇ ·~j(~r, t) d3~r = − d

dt

∫
V
ρ(~r, t) d3~r.

Removing the integration on both sides, we get

~∇ ·~j(~r, t) = − ∂ρ(~r, t)
∂t

.

This is called the continuity equation, and is an equivalent statement of charge contribu-
tion: convergence or divergence of the current at a point means the charge at that point
must be changing.

So can now recognize that in electrodynamics, our version of Ampere’s law that was
perfectly good for magnetostatics is not consistent with conservation of charge. It was
Maxwell who realized that an additional term is required in Ampere’s law in the time-
dependent case, and the full law reads:

~∇× ~B(~r, t) = 1
ε0c2

~j(~r, t) + 1
c2
∂ ~E(~r, t)
∂t

.

As required, the extra term disappears when we have no time-dependence. For historical
reasons, this extra term is called “Maxwell’s displacement current.” However, this is
a bad choice of terminology - it has nothing to do with electric currents. It simply
encompasses the fact that in addition to being produced by electric currents,
magnetic fields can also be created by time-varying electric fields. The factor
of 1

c2 means the magnetic field produced by a time-varying electric field is usually very
small - nevertheless, this term is essential to ensure charge conservation, and we will see
it is very important in the understanding of electromagnetic radiation.

To see how the addition of the “Maxwell displacement current” yields conservation
of charge in a case where we have sources and sinks of currents (and so net current flow
through closed surfaces), take the divergence of Ampere’s law and use the vector identity
~∇ · (~∇× ~B(~r, t)) = 0, and we get

0 = 1
ε0c2

~∇ ·~j(~r, t) + 1
c2

∂

∂t
(~∇ · ~E(~r, t)).

Using Gauss’s law ~∇ · ~E(~r, t) = ρ(~r,t)
ε0
, this becomes

0 = 1
ε0c2

~∇ ·~j(~r, t) + 1
ε0c2

∂ρ(~r, t)
∂t

.

Removing the factor 1
ε0c2 , we obtain the continuity equation, which was the statement of

charge conservation.
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0.2 Example showing the need for the displacement current

Consider a surface S with boundary the closed loop Γ. Then the circulation of the magnetic
field around the loop is :∮

Γ
~B · d~̀=

∫
S

~B · d~S (using Stokes′ theorem).

If we apply Ampere’s law in the form ~∇× ~B = 1
ε0c2

~j,∮
Γ
~B · d~̀= 1

ε0c2

∫
~j · d~S,

where the right hand side is the current through the surface S. This result for the
circulation of the magnetic field around Γ applies for any surface S with boundary Γ.

Let’s apply this result to the situation of charging up a capacitor - adding charge to
the top plate via a current Iand removing charge from the bottom plate by a current of
the same magnitude, and consider the surface S1 shown with boundary Γ:

Then the circulation of the magnetic field around Γ is∮
Γ
~B · d~̀= 1

ε0c2 (current through S1) = I

ε0c2 .

So as expected, we find a nonzero circulation of the magnetic field around the current.

However, for the same loop Γ, suppose we choose the surface S2 shown below:

In this case, there is no current through S2, and so Ampere’s law in the form used will
yield the value zero for the circulation of the magnetic field around the current, which is
clearly incorrect. What has gone wrong? The problem is that for the choice of surface S2,

the displacement current makes a nonzero contribution: using the full form of Ampere’s
law

~∇× ~B = 1
ε0c2

~j + 1
c2
∂ ~E

∂t
,

the circulation of the magnetic field around Γ is∮
Γ
~B · d~̀= 1

ε0c2 (current through S2) + 1
c2
d

dt

∫
S2

~E · d~S.
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Whilst the first term on the right hand side still vanishes, the second term is non-vanishing
as an electric field builds up between the plates of the capacitor as the capacitor charges,
consistent with the fact that the circulation of the magnetic field around the current I is
nonzero. Indeed, the electric field between the capacitor plates is σ

ε0
, where σ is the charge

density on the plates. I the area of the capacitor plates is A, then
∫
S2
~E · d~S = σA

ε0
= Q

ε0
,

where Q is the charge on the plate. So

1
c2
d

dt

∫
S2

~E · d~S = 1
ε0c2

dQ

dt
= I

ε0c2 ,

which is the correct value of the circulation of the magnetic field around the current.
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1 Electromagnetic Waves

Consider Gauss’s law
~∇ · ~E(~r, t) = ρ(~r, t)

ε0
.

In regions of space where the charge density vanishes,

~∇ · ~E(~r, t) = 0.

This does not necessarily imply that the electric field vanishes in these regions. For
example, for a point charge q at the origin, the electric field takes the form

~E(~r) = q

4πε0r2 ~er,

where ~er is a unit vector in the radial direction. The charge density is nonzero only at
the origin, but the electric field is everywhere nonvanishing.

Maxwell’s equations in regions where ρ(~r, t) = 0 and ~j(~r, t) = 0 are called the “ vac-
uum Maxwell equations”. There may or may not be electric and magnetic fields in these
regions, depending on the arrangement of charges and currents outside the region. A very
important class of solutions to the vacuum Maxwell equations correspond to electromag-
netic waves (such as light, radio waves, microwaves, X-rays, gamma rays etc). The electric
and magnetic fields in electromagnetic waves are usually created by oscillating charges in
antennas.

The vacuum Maxwell equations are:

~∇ · ~E(~r, t) = 0 (1.1)

~∇× ~E(~r, t) = − ∂
~B(~r, t)
∂t

(1.2)
~∇ · ~B(~r, t) = 0 (1.3)

~∇× ~B(~r, t) = 1
c2
∂ ~E(~r, t)
∂t

. (1.4)

Note that there is a symmetry: the equations are unchanged by the substitutions ~E →
−c ~B, ~B → 1

c
~E. This is known as duality symmetry.

The vacuum Maxwell equations are all first order partial differential equations. Con-
sider first equations (1.2) and (1.4). They are coupled equations - they involve both ~E

and ~B. A common trick to decouple first order differential equations is to differentiate
to make them second order differential equations. First we take the curl of both sides of
(1.2), and use the vector identity

~∇×
(
~∇× ~V

)
= ~∇

(
~∇ · ~V

)
− ~∇2~V ,

where the Laplacian operator ∇2 = ~∇ · ~∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . This gives

~∇
(
~∇ · ~E(~r, t)

)
− ~∇2 ~E(~r, t) = − ∂

∂t
~∇× ~B(~r, t).
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The first term on the left hand side vanishes as a result of equation (1.1), and equation
(1.4) means the right hand side is equal to − 1

c2
∂2 ~E(~r,t)
∂t2

. So we get the decoupled differential
equation

~∇2 ~E(~r, t) = 1
c2
∂2 ~E(~r, t)
∂t2

. (1.5)

Similarly, taking the curl of both sides of equation (1.4) yields

~∇
(
~∇ · ~B(~r, t)

)
− ~∇2 ~B(~r, t) = 1

c2
∂

∂t
~∇× ~E(~r, t).

The first term on the left hand side vanishes using (1.3), and using (1.2) for the term on
the right hand side, we arrive at

~∇2 ~B(~r, t) = 1
c2
∂2 ~B(~r, t)
∂t2

. (1.6)

This is a decoupled second order differential equation for the magnetic field, and takes
the same form as the equation for the electric field (1.5).

The equations (1.5) and (1.6) are vector equations, and so we can consider the x, y
and z components. They all take a similar form:(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
f(~r, t) = 1

c2
∂2

∂t2
f(~r, t). (1.7)

This is known as the three-dimensional wave equation.

Consider the one-dimensional wave equation:

∂2

∂x2 f(x, t) = 1
c2
∂2

∂t2
f(x, t). (1.8)

This equation admits solutions of the form

f(x, t) = Aei(kx−ωt)

provided ω
k

= c, the speed of light. (Note: this is not the most general solution, it is a
special type of solution related to sinusoidal waves).
Check:

∂2

∂x2 f(x, t) = (ik)2 f(x, t)

1
c2

∂2

∂t2
f(x, t) = (−iω)2

c2 f(x, t)

These are equal if k2 = ω2

c2 .

Using
Aei(kx−ωt) = A cos(kx− ωt) + i A sin(kx− ωt),
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the real and imaginary parts of this solution represent sinusoidal waves, such as the
displacement of a water surface. The wave motion is characterised by

k = wave number = 2π
λ

ω = angular frequency = 2πf,

where λ is the wavelength and f is the frequency of the wave motion. The argument
(kx − ωt) is called the phase of the wave at the point x at time t. The ratio ω

k
is known

as the phase velocity of the wave, it determines the speed at which a point of given phase
moves (and therefore the speed of the wave). In the case of the one-dimensional wave
equation we are dealing with, ω

k
= c, the speed of light.

Proofs of basic wave properties
Consider the waveform f(x, t) = A cos(kx− ωt). A snapshot of the waveform at t = 0 is
A cos kx :

The displacement of the point at x = 0 as a function of time is A cosωt:
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