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The Denavit-Hartenberg (DH) Convention

* Representing each individual homogeneous
transformation as the product of four basic
transformations:
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DH for Two-Link Manipulators

* PP robot Desired Position vector r = {
e DH frames gl
* DH table

* a;. OiOi—l @ Xi

* a;: £(2i-1 = z;) @ x;

o d;: 0;0;-4 @z;_q

¢ 0;: L(Xi—1 = X)) @ 24
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DH for Two-Link Manipulators 2

PP robot
e DH frames
e DH table
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DH for Two-Link Manipulators

X3
y
* RR robot
* DH frames
e DH table
a;. OiOi—l @ Xi
a;: L(zi—q — z;) @ x;
d;: 0,0;_1 @ z;_4 I
0;: L(Xi—1 = X;) @ zZ;_4 j/ ,
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DH for Two-Link Manipulators

y
* RR robot
* DH frames .
0;0;_4 @ x;
* DH table £z = 2) @,

0;0;—4 @z
L(Xi—1 2 x;) @z
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RP and PR Robots

 Kinematics

* RP Robot
* Forward
. [Tx] B [d160561]
ry - dlsin91
* [nverse

* 0, = atan2(ry, 1y)

¢ d1=\/7"xz+7‘y2
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RP and PR Robots

 Kinematics
* PR Robot
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0,0;_1 @ x;
£(zi—1 = z;) @ x;
0;0;_, @z
£(Xi—q 2 X)) @ 24

three-link cylindrical robot

« 3DOF: need to assign four coordinate frames
1. Choose z, axis (axis of rotation for joint 1, base frame)

2. Choose z, axis (axis of translation for joint 2)
3. Choose z, axis (axis of translation for joint 3)
4

. Choose z; axis (tool frame)
This is again arbitrary for this case since we have described no wrist/gripper
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Instead, define z; as parallel to z,
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0,0;_1 @ x;
£(zi—1 = z;) @ x;
0;0;_, @z
£(Xi—q 2 X)) @ 24

three-link cylindrical

 DH parameters
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First, define the constant parameters a;, ¢
Second, define the variable parameters @&, d.

robot
ink |a, | |di | &
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0;0;-1 @ x;
£(zi-1 = 2;) @ x;

0;0;—1 @z

L(Xi—qg 2 x;) @ z;_4
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spherical wrist

3DOF: need to assign four coordinate frames
yaw, pitch, roll (6,, 6;, 6;) all intersecting at one point o (wrist center)
Choose z; axis (axis of rotation for joint 4)
Choose z, axis (axis of rotation for joint 5)
Choose z; axis (axis of rotation for joint 6)
Choose tool frame:

WD e

zZ; (a) is collinear with zg

Ye (S) is in the direction the gripper closes
Xg (N) is chosen with a right-handed convention

Wrist Center Point

X4 <—

Z4

Z3,X5

e

ol

Y

To Gripper
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0,0;_1 @ x;
£(zi—1 = z;) @ x;
0;0;_, @z
£(Xi—q 2 X)) @ 24
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DH parameters

First, define the constant parameters a;, ¢
Second, define the variable parameters &, d.

link | a, | o |d |4 |

Z3,X5

X4 <
To Gripper
Z4
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cylindrical robot with
spherical wrist

 6DOF: need to assign seven coordinate frames

— But we already did this for the previous two examples, so we can fill in the
table of DH parameters:

A ink |a, |6 |di | 6
ds o )
OB g
b w1 2
3
& a4
03, 04, O are all at
0 the same pointo, 7 |5
N\ N— 6
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* Note that z; (axis for joint 4) is collinear with z, (axis for joint 3), thus we
can make the following combination:

o, ot d] r, =C,C,C:Cq —C,S,Ss +S,S:Cq
ort 0 L, I, Iy d 21 = 5:C4CsCq —S:54S6 = C1S5Co
6H:3H63H: ' f,, =—S,C.C. —C,S
I I d, 31 4t5te ~ L6
A 0 0 0 1 lo = —C1C4CsSs — C1S4C6 —S:SsCs
R Q O Iy = —S,C4C5S¢ —S;S,S¢ + C;S5Cs
(:O C @ C [J—— l3, =S4CsC6 —C4Co
04 O Vs I3 =C1C4Ss —S,Cq
Iy = S51C4S5 +CiCs
dy 33 = —S4Ss
d, =¢,C,S;ds —S,Cdg —s,d,
6, d, =s,C,Ssdg +C,Csdg +Cyd,

\_ d, =-s,s.d, +d, +d,



0;0;-1 @ x;
£(zi-1 = 2;) @ x;

0;0;—1 @z
L(Xi—1 2 X)) @ z;_4

the Stanford manipulator
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Figure 1: Stanford manipulator.

6DOF: need to assign seven coordinate frames:

1.

o bk W

Choose z, axis (axis of rotation for joint 1, base frame)
Choose z;-z; axes (axes of rotation/translation for joints 2-6)
Choose x; axes

Choose tool frame

Fill in table of DH parameters: .

ink | a, | o | d; |4 | 6

=

ds
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the individual homogeneous transformations:

1 00 0]
010 O




sH=H--°H =

Finally, combine to give the complete description of the forward
kinematics:

/ M1 = Cl[CZ (C4CSC6 o 3486)_ S2S5C6 ] - dz (S4C5C6 +C4Se )

o1 = Sl[CZ(C4C5C6 B 5456)_ S255Cs ] + Cl(S4CSCG T C4SG)

I3 = =S, (C4CSC6 —35456 ) —C5S5C

Mo = Cl[_ C, (C4C536 +35,Cq ) +5,5556 ] - 51(_ S4CsS¢ T CyCo )

X M = _Sl[_ C, (C4CSSG —34Cs ) — 5,555 ] * Cl(_ S4CsS6 +C4Se )
=5,(C,CeSg +5,C )+ C,S:Sg

- Cl(C2C4SS +S,Cs ) 515455

j 23 =5,(C,C,Ss +5,C5 )+ C,S,Ss

S
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=Cpd; + d6(C2C5 - C45255)



0;0;-1 @ x;

ﬂ - z;) @ x; ‘ﬂ’
0;0;_4 @ z;_4 ]
4G 2 %) @21 the SCARA o
manipulator l
« 4DOF: need to assign five coordinate frames: .

1. Choose z, axis (axis of rotation for joint 1, base frame)

2. Choose z,-z; axes (axes of rotation/translation for joints 2-4)
3. Choose x; axes
4. Choose tool frame
5. Fillin table of DH parameters:
Z]
k
6,0
ink | a [ o [d |4 | o 1 37
= = 3
X » T
1_ } 20 SEREZ Suggested
2 o, (L0 % x; i insertion: photo
— I r Vo d |
3 UK, o w OF SCARA
1 v . manipulator
e,
Y
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_ | 6, revolute
coordinate —1i: 4

| d, prismatic

Joint coordinate-i: |gq, = £0. + £.d.

Inverse Kinematics L

1 prismatic

and & =1-¢g

Direct Kinematic Model:

Joint Coordinate Vector: |¢ =(4,9,-.-.9, )T

@ The direct kinematic model consists in a function f(q) mapping the joint
position variables q € IR" to the position/orientation of the end effector.

@ The definition of f(q) is conceptually simple, and a general approach for its
computation has been defined.

2019-07-08 8:53:05 AM
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Inverse Kinematics

* Find the values of joint parameters that will put the tool frame at a desired
position and orientation (within the workspace)

e Given H: "
0 R T
H:{O 1:|€SE(3) H{o 1}eSE(s)

The Euclidean group for SE(3) is used for the kinematics of a rigid body, in classical
mechanics

* Find all solutions to:

* Noting that:

* This gives 12 (nontrivial) equations with n unknowns



Inverse Kinematic Model:

@ The inverse kinematics consists in finding a function g(x) mapping the
position /orientation of the end-effector to the corresponding joint variables q:
the problem is not simple!

A general approach for the solution of this problem does not exist

On the other hand, for the most common kinematic structures, a scheme for
obtaining the solution has been found. Unfortunately

@ [he solution is not unique. In general we have:
@ No solution (e.g. starting with a position x not in the workspace);
@ A finite set of solutions (one or more);
@ Infinite solutions.

@ We seek for closed form solutions, and not based on numerical techniques:

@ The analytic solution is more efficient from the computational point of view;
o If the solutions are known analytically, it is possible to select one of them on

the basis of proper criteria. . .
Prop Closed-form solutions are ideal!
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In order to obtain a closed form solution to the inverse kinematic problem, two
approaches are possible:

@ An algebraic approach, i.e. elaborations of the kinematic equations until a
suitable set of (simple) equations is obtained for the solution

@ A geometric approach based, when possible, on geometrical considerations,

dependent on the kinematic structure of the manipulator and that may help
in the solution.

2019-07-08 8:53:05 AM
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Algebraic Approach

For a 6 dof manipulator, the kinematic model is described by the equation

sH(a..... 0, )=1H (a,)--"H(a,)
equivalent to 12 equations in the 6 unknowns g;, 1 =1...., 6.

Example: spherical manipulator (only 3 dof)

H 0.5265 0.7660 0.3687 0.9504

—| —0.5736 0.0000 0.8192 0.4096
0 0 0 1

G5y G 515 Gy + d351 5
— 52 0 C2 d3 CQ
0 0 0 1

0.5868 —0.6428 0.4394 —0.4231 ] |: GG -5 G S —dhS1 +di (1S

i1
Since both the numerical values of °H and the structure of the H ‘matrices
are known, by suitable pre- / post-multiplications it is possible to obtain

[(1)H (CI1)' "iiill_I (Qi )]71(2H )[j+1jH (qj'+1)' "E?H (QG )]71:i+1iH (Ch)' "jile (qj ) I < j

obtaining 12 new equations for each couple (i.j). i <.

By selecting the most simple equations among all those obtained, it might be

2019-07-08 8:53p088ible to obtain a solution to the problem.



the Stanford manipulator

* Foragiven H:

0 1 0 —0.154]
0 0 1 0.763
100 0

0 0O 1

* Find 011 021 d3l 84' 85’ 05:

H=

Figure 1: Stanford manipulator.

Cl[CZ (C4C5C6 —S5456 ) —5,55C6 ] -d, (S4C5C6 +C4Se ) =0
Sl[CZ (040506 —5456 ) —5,55C6 ] + Cl(S4CSC6 +C4S6 ) =0

—5; (C4CSC6 - 5436)_ C,S5Ce =1

Cl[_ C, (C40536 + S4cs)+ S25556 ] B 51(_ S4CsSe T CyCo ) -1
- 51[_ CZ(C4C556 - S4C6)_ S25556 ] T Cl(_ S4CsSe +C4Sg ) =0

N

S,(C,CsSq +5,Cg )+ C,S:S, =0
c,(c,C,S5 +5,65)—5,8,5; =0
s,(C,C,Ss +5,C:)+C,8,S; =1
-S,C,Sc.+C,c. =0
¢,S,d, —s,d, +dg(c,C,C,S: +C,C.S, —S,5,S; )= —0.154
s,s,d, +¢,d, +d,(c;s,s, +€,C,5,S; +CcS,S,)=0.763
C,d; +dg (Czcs —C4S5;55 ) - 0/

—

* One solution: 6,=n/2, 6,=n/2,d;=0.5, 6,= 7/2, 6. =0, 6, = 7/2

2019-07-08 8:53:05 AM
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Geometric Approach

General considerations that may help in finding solutions with algebraic techniques
do not exist, being these strictly related to the mathematical expression of the
direct kinematic model. On the other hand, it is often possible to exploit
considerations related to the geometrical structure of the manipulator.

PIEPER APPROACH

Many industrial manipulators have a kinematically decoupled structure, for
which it is possible to decompose the problem in two (simpler) sub-problems:

@ Inverse kinematics for the position (x,y,2) = q1.G2. g3

Q Inverse kinematics for the orientation R — qga.gs5. ge.

2019-07-08 8:53:05 AM
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PIEPER APPROACH: Given a 6 dof manipulator, sufficient condition to find a

closed form solution for the IK problem is that the kinematic structure presents:

@ three consecutive rotational joints with axes intersecting in a single point

or

@ three consecutive rotational joints with parallel axes.

In many 6 dof industrial manipulators, the first 3 dof are usually devoted to
position the wrist, that has 3 additional dof give the correct orientation to the

end-effector.
In these cases, it is quite simple to decompose the IK problem in the two
sub-problems (position and orientation).

2019-07-08 8:53:05 AM 28



In case of a manipulator with a spherical wrist, a natural choice is to decompose
the problem in

Q IK for the point p, (center of the spherical wrist)

Q solution of the orientation |IK problem

Therefore:

@ The point p, is computed since JH is known (submatrices R and p):
Pp =P — dsa
p, depends only on the joint variables g;. g2, g3;
Q The IK problem is solved for g1. g». g3;
© The rotation matrix °R3 related to the first three joints is computed;
Q The matrix °>Rg = URg R Is computed:;
@ The IK problem for the rotational part is solved (Euler).

2019-07-08 8:53:05 AM
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kinematic decoupling

Appropriate for systems that have an arm a wrist
— Such that the wrist joint axes are aligned at a point

For such systems, we can split the inverse kinematics problem into two
parts:

1. Inverse position kinematics: position of the wrist center
2. Inverse orientation kinematics: orientation of the wrist

First, assume 6DOF, the last three intersecting at o,

°R(d,,...,0s)=R
20(qy,...,05)=0

Use the position of the wrist center to determine the first three joint
angles...

30
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Now, origin of tool frame, o, is a distance d translated along z; (since
z; and z; are collinear)

— Thus, the third column of R is the direction of z; (w/ respect to the base

frame) and we can write: 0

0=o0g =02 +d,R| 0
1

— Rearranging: 0
o, =0-d,R|0
1

— Calling o = [0, 0, 0,]", 0.° = [X. Y, Z]"

X O, _d6r13
Ye [=10y _derzs
OZ

Cc

31



2019-07-08 8:53:05 AM

Since [x. Y. z,]" are determined from the first three joint angles, our
forward kinematics expression now allows us to solve for the first three
joint angles decoupled from the final three.
— Thus we now have Rg°
— Note that:

0p 3
R=;RR
— To solve for the final three joint angles:
*R=(R)"R=(RJR

— Since the last three joints for a
spherical wrist, we can use a set of
Euler angles to solve for them

32



2019-07-08 8:53:05 AM

Inverse position

Now that we have [x. Y, z.]" we need to find q,, 9,, 03
— Solve for g; by projecting onto the x, ,, y;; plane, solve trig problem
— Two examples: elbow (RRR) and spherical (RRP) manipulators

— For example, for an elbow manipulator, to solve for 8, project the arm onto
the Xxg, Y, plane

33



Background: two argument atan

* We use atan2(-) instead of atan(-) to account for the full range of
angular solutions

 Called ‘four-quadrant’ arctan

(—atan2(-y,x) y<O
7 —atan _Y y>0,x<0
X

atan2(y,x) = atan(lj y >0,x>0
X

T
— >0,x=0
5 y

| undefined y=0,x=0




RRR manipulator
Anthropomorphic structure

1. To solve for 8, project the arm onto the x,, y, plane
6, = atan2(x_,y. )
o \ Yo

Yo

— Can also have: 6, =z +atan2(x_,y, )
» This will of course change the solutions for &, and 6,

2019-07-08 8:53:05 AM



singular configurations, offsets

* Ifx=y.=0, 6, is undefined * If there is an offset, then we will have two solutions for

* i.e.any value of &, will work 0,: left arm and right arm
* However, wrist centers cannot intersect z,

2019-07-08 8:53:05 AM 36



Left arm and right arm solutions

* Leftarm: * Rightarm:

O,=a+p
a = atan2(x_,y. )

B = 7z+atan2(\/xc2 +y,” —dz,d)

0 =90-c

¢ = atan2(x.,y, )

o = atanz(\/xc2 +y.° —dz,d)
o — atanz(— Jx2+y2—d? ,—d)

o

2019-07-08 8:53:05 AM
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Left arm and right arm solutions

* Therefore there are in general two solutions for 6,

* Finding 6, and 6, is identical to the planar two-link manipulator we
have seen previously:

2 2
r’+s°-a,” —-a,

COSH, = s
273

r’=x+y, —d?
S=2z.,-d,

2 2 2 2 2 2
X +Ye —d +(Zc_d1) —a, —a, _

= C0S0O; = >a.a
273

* Therefore we can find two solutions for 6,
0, :atanZ(D,J_rx/l— DZ)

Y
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Left arm and right arm solutions

* The two solutions for &, correspond to the elbow-down and elbow-up
positions respectively

* Now solve for 6;:

6, = atan2(r,s)-atan2(a, + a,C,,a,S;)

= atanz(\/xc2 +y..—d?,z, —dl) —atan2(a, +a,C,,a,s, )

 Thus there are two solutions for
the pair (6,, 6;)

Y
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RRR: Four total solutions

* In general, there will be a maximum of four solutions to the inverse
position kinematics of an elbow manipulator

* Ex: PUMA

Left Arm Elbow Down Right Arm Elbow Down

2019-07-08 8:53:05 AM
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P

Solution of the spherical manipulator <

RRP manipulator

—3 Direct kinematic model:
xa/ ]
Zo ’ oy_ | M s ap
3 00 0 1
] V2 [ GG -5 OGS —dhSi +dBGS
X B GS, G S5.S G+ diS.S,
o —52 0 C2 d3C2
0 0 0 1 |

. 0Ly - . .
If the whole matrix ;H is known, it is possible to compute:

f1 = atan2(—sx.sy) Unfortunately, according to
0, = atan2(—n;.a;) — the Pieper approach only p
d3 = pz/cosbs is known!

2019-07-08 8:53:05 AM 41



Z, b
Zﬂ
J [} Lo ‘
2 Z]? | ] yg
Xy Ly x’ &
2
Jl
LU'
ST 777
G S
0L 1\-10 0 0
((H) " 3H = _S G
| 0 0
1
,yHZH
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we have
Px ] i Cz 0 52
py | S 0 -G
p- | | 0 1 0
1| [0 0o o

d3 S,
—dz3 (o
o




By equating the position vectors,

py Ci + Pysl d35;
'pp = —Pz = | —d3(
| —pxS1+py G |
The vector 1pp depends only on #> and d3! Let's define a = tan#; /2, then
1 — a’ 2a
Q=172 =1

By substitution in the last element of 1pp

 —pcE PR+ pE— 2

dr + >+ 2pat+dr—p, =0 E— a
(d2 + py) p > — py A

Two possible solutions! ((ps + p; — d3) > 077)

Then

1 = 2 atan2 (—py £ \/p§ + pf, —d3, dr+ py)

2019-07-08 8:53:05 AM
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Vector 1pp Is defined as

px C1 + pysl d352
lpp — — Pz = —d3 ()
—pxS1+py G do

From the first two elements

pxC1tpyS1 935
—Pz —d3 (5

from which

#y = atan2 (pxC1 + py S1. pz)

Finally, if the first two elements are squared and added together

d3 = \/(chl + pyS1)? + p?

2019-07-08 8:53:05 AM
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Note that two possible solutions exist considering the position of the end-effector
(wrist) only. If also the orientation is considered, the solution (if exists) is unique.

We have seen that the relation (p2 + ,Df, — d3) > 0 must hold:

2019-07-08 8:53:05 AM
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Numerical example: Given a spherical manipulator with d> = 0.8 m in the pose
91 = 200. 92 = 300. d3 —05m

we have i i
0.8138 —0.342 0.4698 | —0.0387

oH ] 02962 0.9397 0.171 0.8373
3 N —0.5 0 0.866 0.433
0 0 0 1

e The solution based on the whole matrix JH is: #; = 20°, 6, =30°, d;3 = 0.5.

e [he solution based on the vector p gives:
a) 6, =20°, #, =30° d; =05 (with the “+" sign).
b) #1 = —14.7° 6, = —-30° d3 =05 (with the "-" sign).
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e [he solution based on the vector p gives:

a) 01 =20° 6, =30° d3 =05 (with the “+" sign).
b) #1 = —14.7°, 0, = —30°, d; =0.5 (with the “-" sign).
y
®
H
™~ X
Y Yy
/ NS
QAN /I
- N
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Solution of the spherical wrist

Z. X5 X

/l_ Let us consider the matrix
Z g _

Ny Sy

3R6 = ny Sy

| Nz s

From the direct kinematic equations one obtains

{ CaCsCe — S54S6  —S4Ce — C4GsSs (4S5
Re = | S4CsCo+ C4Ss CaCo — S4CsSe SaSs

L —55C5 5556 C5

2019-07-08 8:53:05 AM
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CaCsCs — 5456 —5,C — G4 G556
Re = | SaCsCo+ CuSs CaCo — SaGsSe
— 55 G Sk S

The solution is then computed as (ZYZ Euler angles):

@ 5 € [0,7]:
6s = atan2(ay, ax)
65 = atan2(y/aZ+ a2, a;)
0 = atan2(s., —n;)

@ 05 € [—m, 0l
#s = atan2(—a,, —ax)
fs = atan2(—y/a?+ a2, a;)
6 = atan2(—s,, n,)

2019-07-08 8:53:05 AM

Cs S5
5455
Cs

49



Numerical example: Let us consider a spherical wrist in the pose
0, = 10° fs = 20°, Hg = 30°

Then
0.7146 —0.6131 0.3368

’Rg = 0.6337 0.7713  0.0594
—0.2962 0.1710 0.9397

Therefore, if

o 5 c [0. ’FT] 0a = 10° 05 = 20°. He = 30°

o s c[—m. O] fy = —170° 5 = —20°, g = —30°

Note that the PUMA has an anthropomorphic structure (4 solutions) and a
spherical wrist (2 solutions):

— 8 different configurations are possible!
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