HEAT TRANSFER

Kotiba Hamad - Sungkyunkwan university

- 3.6 Heat Transfer from Extended Surfaces

 3.6.1 A General Conduction Analysis 156
 3.6.2 Fins of Uniform Cross-Sectional Area 158
 3.6.3 Fin Performance 164
 3.6.4 Fins of Nonuniform Cross-Sectional Area 167
 3.6.5 Overall Surface Efficiency 170

 3.7 The Bioheat Equation

 Thermoelectric Power Generation
 Micro- and Nanoscale Conduction
 3.9.1 Conduction Through Thin Gas Layers 189
 - 3.9.2 Conduction Through Thin Solid Films 190

1. Introduction

The term *extended surface* is usually used for figure out *a special case of heat transfer*; heat transfer by conduction within a solid and heat transfer by convection (and/or radiation) from the boundaries of the solid.

- As compared to the concepts studied before, for an extended surface, the direction of heat transfer from the boundaries is perpendicular to the principal direction of heat transfer in the solid.
- Until now, we have considered heat transfer from the boundaries of a solid to be in the same direction as heat transfer by conduction in the solid.

1. Introduction

Consider a strut that connects two walls at different temperatures and across which there is fluid flow.

- With $T_1 > T_2$, temperature gradients in the x-direction sustain heat transfer by conduction.
- ▶ with $T_1 > T_2 > T_\infty$, there will be concurrent transfer to the fluid by convection.
- The magnitude of temperature gradient, accordingly, will decease by increasing x.
- This is very important in several applications, like fins (Finenhanced heat transfer).

1. Introduction

Fin-enhanced heat transfer

Two ways of increasing heat transfer rate in Figure 3.13a:

- Increasing the fluid velocity to increase the convection coefficient h.
- > The fluid temperature T_{∞} could be reduced.
- Increasing the surface area across which the convection occurs by employing fins (Fig. 3.13b).

(a) (b)
FIGURE 3.13 Use of fins to enhance heat transfer from a plane wall.
(a) Bare surface. (b) Finned surface.

2. A General Conduction Analysis

It is first important to know to which extent extended surfaces or fin arrangements could improve heat transfer from a surface to the surrounding fluid. In order to find that, temperature distribution along the fin should be determined by considering some assumptions:

- 1. One-dimensional conduction conditions in x-direction.
- 2. The rate of conduction at any point is equal to the rate to convection at that point.
- 3. Temperature is uniform throughout the thickness of the fin (it is only a function to x).
- 4. Steady-state conditions.
- 5. Thermal conductivity is constant.
- 6. The radiation from the surface is negligible.
- 7. No heat generation.
- 8. Convection heat transfer coefficient (h) is uniform over the surface.

2. A General Conduction Analysis

By applying conservation of energy:

$$q_x = q_{x+dx} + dq_{\rm conv}$$

From Fourier's law we know that:

$$q_x = -kA_c \frac{dT}{dx}$$

where A_c is the *cross-sectional* area, which may vary with x. Since the conduction heat rate at x + dx may be expressed as:

$$q_{x+dx} = q_x + \frac{dq_x}{dx}dx$$

2. A General Conduction Analysis

$$q_{x+dx} = -kA_c \frac{dT}{dx} - k \frac{d}{dx} \left(A_c \frac{dT}{dx}\right) dx$$

1

For convection:

$$dq_{\rm conv} = h dA_s (T - T_\infty)$$

where dA_s is the *surface* area of the differential element.

$$\frac{d}{dx}\left(A_c\frac{dT}{dx}\right) - \frac{h}{k}\frac{dA_s}{dx}\left(T - T_{\infty}\right) = 0$$

2. A General Conduction Analysis

 \succ This result provides a general form of the energy equation for an extended surface.

Its solution for appropriate boundary conditions provides the temperature distribution.

$$\frac{d^2T}{dx^2} + \left(\frac{1}{A_c}\frac{dA_c}{dx}\right)\frac{dT}{dx} - \left(\frac{1}{A_c}\frac{h}{k}\frac{dA_s}{dx}\right)(T - T_{\infty}) = 0$$

FIGURE 3.15 Fin configurations. (*a*) Straight fin of uniform cross section. (*b*) Straight fin of nonuniform cross section. (*c*) Annular fin. (*d*) Pin fin.

2.1. Fins of Uniform Cross-Sectional Area

The simplest case of straight rectangular and pin fins of uniform cross section.

FIGURE 3.17 Straight fins of uniform cross section. (*a*) Rectangular fin. (*b*) Pin fin.

2.1. Fins of Uniform Cross-Sectional Area

- Each fin is attached to a base surface of temperature $T(0) = T_b$ and extends into a fluid of temperature T_{∞} .
- \succ A_c is a constant.

 \triangleright A_s is equal to *P.x*, where *P* is the perimeter.

$$\frac{d^2T}{dx^2} + \left(\frac{1}{A_c}\frac{dA_c}{dx}\right)\frac{dT}{dx} - \left(\frac{1}{A_c}\frac{h}{k}\frac{dA_s}{dx}\right)(T - T_{\infty}) = 0$$

2.1. Fins of Uniform Cross-Sectional Area

To simplify the form of this equation, we transform the dependent variable by defining an *excess temperature* (θ) as:

$$\theta(x) \equiv T(x) - T_{\infty}$$

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0 \qquad m^2 \equiv \frac{hP}{kA_c}$$

This is ordinary 2nd order differential equation, the general solution of this equation is:

$$\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$$

$$P = 2w + 2t$$
$$A_c = wt$$

2. 1. Fins of Uniform Cross-Sectional Area *Boundary conditions*:

$$\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$$

1. The temperature at the *base* of the fin (x = 0):

$$\theta(0) = T_b - T_\infty \equiv \theta_b \quad \Longrightarrow \quad \theta_b = C_1 + C_2$$

2. At the tip of the fine (*x*=*L*): there are 4 cases:
➢ Convection through A_c:

$$hA_{c}[T(L) - T_{\infty}] = -kA_{c} \frac{dT}{dx} \bigg|_{x=L} \qquad h\theta(L) = -k \frac{d\theta}{dx} \bigg|_{x=L}$$

$$h(C_{1}e^{mL} + C_{2}e^{-mL}) = km(C_{2}e^{-mL} - C_{1}e^{mL})$$

$$\frac{\theta}{\theta_{b}} = \frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL} \qquad m^{2} \equiv \frac{hP}{kA_{c}}$$

2. 1. Fins of Uniform Cross-Sectional Area

$$\frac{\theta}{\theta_b} = \frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL} \qquad m^2 \equiv \frac{hP}{kA_c}$$

2. 1. Fins of Uniform Cross-Sectional Area

TABLE 3.4Temperature distribution and heat loss for fins of uniform cross section

Case	Tip Condition $(x = L)$	Temperature Distribution θ/θ_b		Fin Heat Transfer Rate	$e \boldsymbol{q}_f$
A Convection heat transfer: $h\theta(L) = -kd\theta/dx$		$\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$		$M\frac{\sinh mL + (h/mk)\cosh mL}{\cosh mL + (h/mk)\sinh mL}$	
	$\operatorname{Ho}(L)$ $\operatorname{Horotom}_{ \chi=L}$		(3.75)		(3.77)
В	Adiabatic: $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$		<i>M</i> tanh <i>mL</i>	
		• • • • • • • • •	(3.80)		(3.81)
С	Prescribed temperature:				
_	$\theta(L) = \theta_L$	$(\theta_I/\theta_b) \sinh mx + \sinh m(L-x)$		$(\cosh mL - \theta_I/\theta_b)$	
		sinh <i>mL</i>		$M = \frac{1}{\sinh mL}$	
			(3.82)		(3.83)
D	Infinite fin $(L \rightarrow \infty)$:				
	$\theta(L) = 0$	e^{-mx}	(3.84)	M	(3.85)
$\theta \equiv T - T$	$T_{\infty} \qquad m^2 \equiv hP/kA_c$				
$\theta_b = \theta(0)$	$= T_b - T_{\infty} \qquad M \equiv \sqrt{hPkA_c}\theta_b$				

2. 1. Fins of Uniform Cross-Sectional Area Example-1

A very long rod 5 mm in diameter has one end maintained at 100 °C. The surface of the rod is exposed to ambient air at 25 °C with a convection heat transfer coefficient of 100 W/m^2 . K.

- Determine the temperature distributions along rods constructed from pure copper, 2024 aluminum alloy, and type AISI 316 stainless steel.
- > What are the corresponding heat losses from the rods?

2. 1. Fins of Uniform Cross-Sectional Area

- Example-1
- 1. Steady-state conditions.
- **2.** One-dimensional conduction along the rod.
- 3. Constant properties.
- 4. Negligible radiation exchange with surroundings.
- 5. Uniform heat transfer coefficient.
- 6. Infinitely long rod.

Properties: Table A.1, copper $[T = (T_b + T_{\infty})/2 = 62.5^{\circ}C \approx 335 \text{ K}]: k = 398 \text{ W/m} \cdot \text{K}.$ Table A.1, 2024 aluminum (335 K): $k = 180 \text{ W/m} \cdot \text{K}.$ Table A.1, stainless steel, AISI 316 (335 K): $k = 14 \text{ W/m} \cdot \text{K}.$

2. 1. Fins of Uniform Cross-Sectional Area Example-1

TABLE 3.4	Temperature d	istribution and	heat loss :	for fins of	funiform	cross section
-----------	---------------	-----------------	-------------	-------------	----------	---------------

Case	Tip Condition (x = L)	Temperature Distribution θ/θ_b		Fin Heat Transfer Rate <i>q_f</i>	
D	Infinite fin $(L \rightarrow \infty)$: $\theta(L) = 0$	e^{-mx}	(3.84)	М	(3.85)
$\theta \equiv T - T$ $\theta_b = \theta(0)$	$T_{\infty} \qquad m^{2} \equiv hP/kA_{c}$ $= T_{b} - T_{\infty} \qquad M \equiv \sqrt{hPkA_{c}}\theta_{b}$				

$$T = T_{\infty} + (T_b - T_{\infty})e^{-mx}$$
$$m = (hP/kA_c)^{1/2} = (4h/kD)^{1/2}$$

2. 1. Fins of Uniform Cross-Sectional Area **Example-1**

 $k_{Cu} = 398 \text{ W/m.K}$: m=14 m⁻¹ $k_{AI} = 180 \text{ W/m.K}$: m=21 m⁻¹ $k_{Fe} = 14 \text{ W/m.K}$: m=75 m⁻¹

2. 1. Fins of Uniform Cross-Sectional Area Example-1

$$q_f = \sqrt{hPkA_c}\,\theta_b$$

Hence for copper,

$$q_f = \left[100 \text{ W/m}^2 \cdot \text{K} \times \pi \times 0.005 \text{ m} \right]^{1/2} \times 398 \text{ W/m} \cdot \text{K} \times \frac{\pi}{4} (0.005 \text{ m})^2 \right]^{1/2} (100 - 25)^{\circ} \text{C}$$

= 8.3 W

 $q_{Al} = 5.6 \text{ W}$ $q_{Fe} = 1.6 \text{ W}$

2. 1. Fins of Uniform Cross-Sectional Area Example-1

Estimate how long the rods must be for the assumption of *infinite length* to yield an accurate estimate of the heat loss.

In this case the B boundary condition can be used to calculate the length at which we have the infinite condition (no heat transfer at the tip of the very long fin).

Case	Tip Condition (x = L)	Temperature Distribution θ/θ_b	Fin Heat Transfer Rate q _f
В	Adiabatic: $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$ (2.90)	$M \tanh mL$
		(3.80)	(3.81)
D	Infinite fin $(L \to \infty)$: $\theta(L) = 0$	e^{-mx} (3.84)	M (3.85)
$\theta = T - \theta_b = \theta(0)$	$T_{\infty} \qquad m^{2} \equiv hP/kA_{c}$ $M \equiv \sqrt{hPkA_{c}}\theta_{b}$		

2. 1. Fins of Uniform Cross-Sectional Area Example-1

$$L_{\infty} \equiv \frac{2.65}{m} = 2.65 \left(\frac{kA_c}{hP}\right)^{1/2}$$

For copper,

$$L_{\infty} = 2.65 \left[\frac{398 \text{ W/m} \cdot \text{K} \times (\pi/4)(0.005 \text{ m})^2}{100 \text{ W/m}^2 \cdot \text{K} \times \pi (0.005 \text{ m})} \right]^{1/2} = 0.19 \text{ m}$$