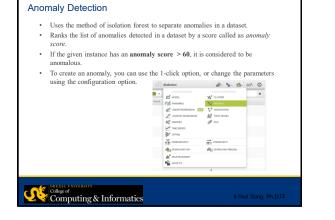
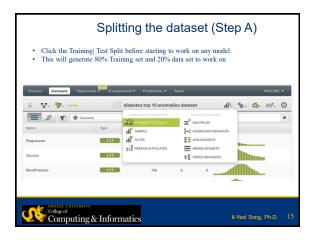
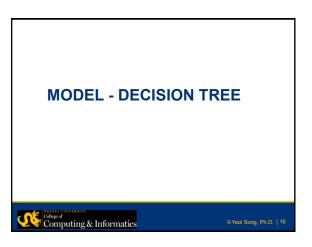
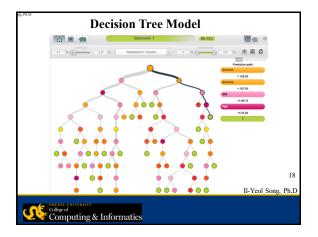

Source	05 Datasets Supervised Unsupervi	ised • Predictions • Tasks	Greate a source from a local file (.csv, /mc, .tet, .jeon, artf, .deta, .gz, .bs2)
		Sources	
Type (Restaurant_Scores_+_LIVES_Standard.csv		3d23h 11.3MB
	24 fields (7 categorical, 12 numeric, 4 text, 7 auto-pener diabetic, data.csv 50 fields (34 categorical, 16 numeric)		44 18,348
• 1		ou to create an inlin	ly from your desktop te source to upload data files ta files by specifying the url link
• 1	The '{abc} sign' allows y	ou to create an inlin	e source to upload data files

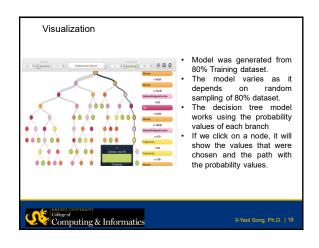


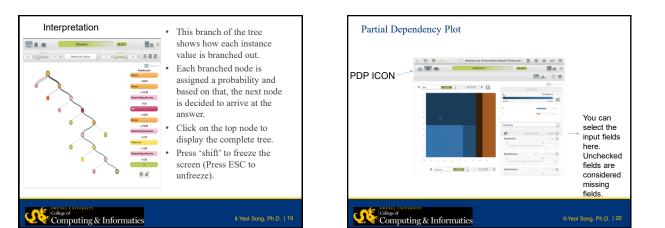
The Diabetes	Diabetes Data Description The Diabetes dataset consists of 9 variables									
✓ There are a t	otal of 768 r	ows.								
Sources Dataset	Soperstant Charperstant	Padelos	Tueston			WHIZML *				
₩₩		diabetes			12 8. 6	(a) ^{\$} . (0)				
= *	Cutcome	-			Q.	×				
Name Pregnancies	7/5m /	Court Man	ing Dro	• •	Hategram					
Glasse	123	798	D							
BoodPressure	123	765	D	0						
SkinThickness	123	755	D	0	hatti i i i i i i i i i i i i i i i i i i	-				
Insulin	123	798	D	0	http://www.com/a	-				
1947	128	799	D	0		-				
DabetesPedgeeFunction	123	799	0	0	h					
Age	123	798	0	0	Illington	-				
Outcome	ALC	798	D	0						
litore 10 📴 feids		133-0-of 9 fields				((1))				
Computing & Information	1	ll-Yeol Song, Ph.	D.							

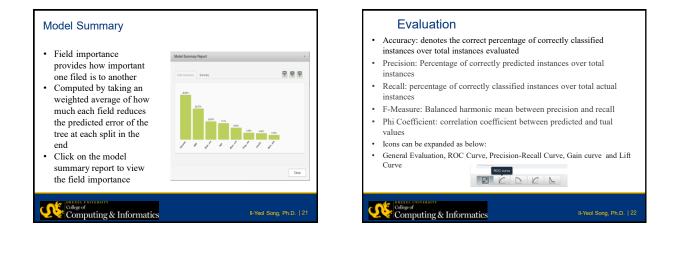


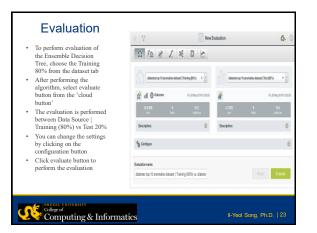







 The field imp anomaly. When you mo 	a the right shows the TOP 10 anon sortance is indicated by histogram over your mouse over an instance i data inspector.	1 indicating the contribu	tion of input filed to the
Field importance*			Allows you t select the
	Version in the second s		and create dataset without ther

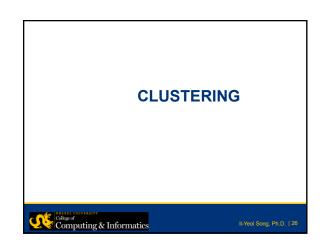




Creating Model Predictions

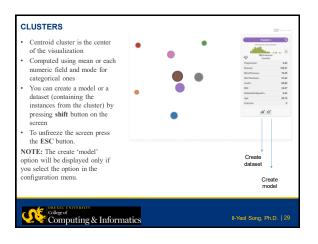
Three options to make predictions from your models:

• **PREDICT BY QUESTION**: to predict a single instance answering just the relevant questions required by the model.


• PREDICT: to predict a single instance using the prediction form.

BATCH PREDICTION: to predict multiple instances simultaneously.
Method:

Under the 'Supervised tab' click on the algorithm you wish to perform prediction on.


Click on the drop down button that appears near the dataset

	di .	Name			Objective		*	â \	\$			
	ılî [*]	diabetes top 10 anomalies dataset [Trainin 812-redo, pruned, dateministic order	Θ	•0 I	Outcome		1w 5d	18.6×28				
	di	Diabetes T PREDICT BY QUESTION		.cl	Outcome		Tw Sci	23.3 HB				
	ıÊ			.el	Outcome		1w 5d	10.6 83				
College of College of Bi-Yeol Song. Ph.D. 25												

Clustering Technique Provided by BigML K-means Algorithm **G-Means Algorithm** · User already knows the · If user does not know number of clusters(k) to be optimal number of clusters, formed using the dataset. G-means is used. • If k is not known • Tries to find the number of beforehand, it might yield clusters by iteratively taking poor results. existing clusters and testing whether the cluster's Maximum number of cluster neighborhood appears = 300 Gaussian in its distribution. · Maximum number of cluster = 128Computing & Informatics

Configuring Clusters K-Means **G-Means** While selecting K-Means In this, you are required to choose algorithm, you select the number a critical value. of clusters a 😨 📴 🚥 diabetes top CLUSTER CONFIGURATION ering algorithm mber of clusters (K) 0 G-means 0 Sets how 'strict' the value should If you do not have a clear idea of he the no. of clusters, then it is better . By default BigML uses 5 as to use G-Means algorithm. critical value Usually range between 1 to 10 is used Computing & Informatics

